精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论函数的单调区间;

(2)若函数处取得极值,对恒成立,求实数的取值范围.

【答案】(1) ①当时,的递减区间是,无递增区间;②当时,的递增区间是,递减区间是.

(2) .

【解析】分析:(1)求出,分两种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)由函数处取得极值,可得,等价于

利用导数研究函数的单调性可得以,从而得.

详解:(1)在区间上

①若,则是区间上的减函数;

②若,令

在区间上,,函数是减函数;

在区间上,,函数是增函数;

综上所述,①当时,的递减区间是,无递增区间;

②当时,的递增区间是,递减区间是.

(2)因为函数处取得极值,

所以

解得,经检验满足题意.

由已知,则

,则

易得上递减,在上递增,

所以,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,其前n项和为Sn , {bn}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=anb1+an1b2+…+a1bn , n∈N* , 证明:Tn+12=﹣2an+10bn(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若曲线上点处的切线过点,求函数的单调减区间;

(II)若函数在区间内无零点,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若是函数的唯一极值点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为 和p.
(1)若在任意时刻至少有一个系统不发生故障的概率为 ,求p的值;
(2)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计的频率分布直方图如图所示.

(1)估计这组数据的平均数(同一组中的数据以这组数据所在区间中点的值作代表);

(2)现按分层抽样从质量为[200,250),[250,300)的芒果中随机抽取5个,再从这5个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;

(3)某经销商来收购芒果,同一组中的数据以这组数据所在区间中点的值作代表,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出以下两种收购方案:

方案①:所有芒果以9元/千克收购;

方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.

通过计算确定种植园选择哪种方案获利更多.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设10≤x1<x2<x3<x4≤104 , x5=105 , 随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值 的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则(
A.Dξ1>Dξ2
B.Dξ1=Dξ2
C.Dξ1<Dξ2
D.Dξ1与Dξ2的大小关系与x1、x2、x3、x4的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1 , CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

1)设,若函数的图象的一条对称轴为直线,求的值;

2)若将的图象向左平移个单位,或者向右平移个单位得到的图象都过坐标原点,求所有满足条件的的值;

3)设,已知函数在区间上的所有零点依次为,且,求的值.

查看答案和解析>>

同步练习册答案