精英家教网 > 高中数学 > 题目详情
3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,离心率为$\frac{{\sqrt{3}}}{3}$,点M在椭圆上,且满足MF2⊥x轴,$|{M{F_1}}|=\frac{{4\sqrt{3}}}{3}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线y=kx+2交椭圆于A,B两点,求△ABO(O为坐标原点)面积的最大值.

分析 (I)运用离心率公式和a,b,c的关系,以及两点的距离公式,解方程可得椭圆方程;
(II)设A(x1,y1),B(x2,y2),将y=kx+2代入椭圆,可得x的方程,运用韦达定理和判别式大于0,求得三角形的面积,化简整理,运用基本不等式即可得到所求最大值.

解答 解:(I)由已知得$\frac{c^2}{a^2}=\frac{1}{3}$,又由a2=b2+c2
可得a2=3c2,b2=2c2
得椭圆方程为$\frac{x^2}{{3{c^2}}}+\frac{y^2}{{2{c^2}}}=1$,
因为点M在第一象限且MF2⊥x轴,
可得M的坐标为$({c,\frac{{2\sqrt{3}}}{3}c})$,
由$|{{F_1}M}|=\sqrt{4{c^2}+\frac{4}{3}{c^2}}=\frac{{4\sqrt{3}}}{3}$,解得c=1,
所以椭圆方程为$\frac{x^2}{3}+\frac{y^2}{2}=1$;
(II)设A(x1,y1),B(x2,y2),
将y=kx+2代入椭圆,可得(3k2+2)x2+12kx+6=0,
由△>0,即144k2-24(3k2+2)>0,可得3k2-2>0,
则有${x_1}+{x_2}=-\frac{12k}{{2+3{k^2}}},{x_1}{x_2}=\frac{6}{{2+3{k^2}}}$
所以$|{{x_1}-{x_2}}|=\frac{{2\sqrt{18{k^2}-12}}}{{3{k^2}+2}}$,
因为直线y=kx+2与轴交点的坐标为(0,2),
所以△OAB的面积$S=\frac{1}{2}×2×|{{x_1}-{x_2}}|=\frac{{2\sqrt{(18{k^2}-12)}}}{{3{k^2}+2}}=\frac{{2\sqrt{6×(3{k^2}-2)}}}{{3{k^2}+2}}$,
令3k2-2=t,由①知t∈(0,+∞),
可得$S=2\frac{{\sqrt{6t}}}{t+4}=2\sqrt{\frac{6t}{{{t^2}+8t+16}}}=2\sqrt{\frac{6}{{t+\frac{16}{t}+8}}}≤\frac{{\sqrt{6}}}{2}$,
所以t=4时,面积最大为$\frac{{\sqrt{6}}}{2}$.

点评 本题考查椭圆方程的求法,注意运用离心率公式,考查三角形的面积的最值的求法,注意运用直线方程和椭圆方程联立,运用韦达定理和弦长公式,以及基本不等式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数g(x)是定义在[a-15,2a]上的奇函数,且f(x)=$\left\{{\begin{array}{l}{{x^2}+1,(x<0)}\\{f(x-a),(x≥0)}\end{array}}$,则f(2016)=(  )
A.2B.5C.10D.17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题正确的个数是(  )
①对于两个分类变量X与Y的随机变量K2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越大;
②在相关关系中,若用y1=c1e${\;}^{{c}_{2}x}$拟合时的相关指数为R12,用y2=bx+a拟合时的相关指数为R22,且R12>R22,则y1的拟合效果好;
③利用计算机产生0~1之间的均匀随机数a,则事件“3a-1>0”发生的概率为$\frac{2}{3}$;
④“x>-1”是“$\frac{1}{x}$<-1”的充分不必要条件.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,A,B两点为喷泉,圆心O为AB的中点,其中OA=OB=a米,半径OC=10米,市民可位于水池边缘任意一点C处观赏.
(1)若当∠OBC=$\frac{2π}{3}$时,sin∠BCO=$\frac{1}{3}$,求此时a的值;
(2)设y=CA2+CB2,且CA2+CB2≤232.
(i)试将y表示为a的函数,并求出a的取值范围;
(ii)若同时要求市民在水池边缘任意一点C处观赏喷泉时,观赏角度∠ACB的最大值不小于$\frac{π}{6}$,试求A,B两处喷泉间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.从1,2,3,4,5,6中任取三个数,则这三个数构成一个等差数列的概率为(  )
A.$\frac{3}{10}$B.$\frac{3}{7}$C.$\frac{7}{10}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的长轴长是短轴长的2倍,且过点B(0,1).
(1)求椭圆的标准方程;
(2)直线l:y=k(x+2)交椭圆于P,Q两点,若点B始终在以PQ为直径的圆内,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{3m}$+$\frac{{y}^{2}}{m}$=1(m>0)的长轴长为2$\sqrt{6}$,O为坐标原点.
(Ⅰ)求椭圆C的方程和离心率;
(Ⅱ)设动直线l与y轴相交于点B,点A(3,0)关于直线l的对称点P在椭圆C上,求|OB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知|$\overrightarrow a$|=6,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,且$(\overrightarrow a$+2$\overrightarrow b$)•($\overrightarrow a$-3$\overrightarrow b$)=-72,|$\overrightarrow b$|为(  )
A.4B.5C.6D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.与⊙C1:x2+(y+1)2=25内切且与⊙C2:x2+(y-2)2=1外切的动圆圆心M的轨迹方程是(  )
A.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(y≠0)B.$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{5}$=1(x≠0)C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(x≠3)D.$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{5}$=1(y≠3)

查看答案和解析>>

同步练习册答案