精英家教网 > 高中数学 > 题目详情
8.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的长轴长是短轴长的2倍,且过点B(0,1).
(1)求椭圆的标准方程;
(2)直线l:y=k(x+2)交椭圆于P,Q两点,若点B始终在以PQ为直径的圆内,求实数k的取值范围.

分析 (1)由题意可得a=2b,b=1,解得a=2,进而得到椭圆方程;
(2)设P(x1,y1),Q(x2,y2),联立直线l的方程和椭圆方程,运用韦达定理,可得Q的坐标,由点B在以PQ为直径圆内,得∠PBQ为钝角或平角,即有$\overrightarrow{BP}•\overrightarrow{BQ}<0$,运用数量积的坐标表示,解不等式即可得到所求范围.

解答 解:(1)由题意知,a=2b,b=1,解得a=2,
可得椭圆的标准方程为:$\frac{x^2}{4}+{y^2}=1$;
(2)设P(x1,y1),Q(x2,y2
联立$\left\{\begin{array}{l}y=k(x+2)\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$,消去y,得(1+4k2)x2+16k2x+16k2-4=0,(*)
依题意:直线l:y=k(x+2)恒过点(-2,0),
此点为椭圆的左顶点,所以x1=-2,y1=0 ①,
由(*)式,${x_1}+{x_2}=-\frac{{16{k^2}}}{{1+4{k^2}}}$ ②,
得y1+y2=k(x1+x2)+4k③,
由①②③,可得${x_2}=\frac{{2-8{k^2}}}{{1+4{k^2}}},\;{y_2}=\frac{4k}{{1+4{k^2}}}$,
由点B在以PQ为直径圆内,得∠PBQ为钝角或平角,
即$\overrightarrow{BP}•\overrightarrow{BQ}<0$.$\overrightarrow{BP}=(-2,\;1),\;\overrightarrow{BQ}=({x_2},\;{y_2}-1)$
$\overrightarrow{BP}•\overrightarrow{BQ}=-2{x_2}-{y_2}+1<0$.即$\frac{{4-16{k^2}}}{{1+4{k^2}}}+\frac{4k}{{1+4{k^2}}}-1>0$,
整理得20k2-4k-3<0,解得$k∈({-\frac{3}{10},\;\frac{1}{2}})$.

点评 本题考查椭圆方程的求法,注意运用椭圆的性质,考查实数的取值范围,注意联立直线方程和椭圆方程,运用韦达定理,考查点在圆内的条件:点与直径的端点的张角为钝角或平角,运用数量积小于0,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知a,b>0,且满足a+4b=1,$\frac{1}{a}$+$\frac{1}{b}$的最小值为n,则二项式(x-$\frac{1}{{2\sqrt{x}}}$)n的展开式的常数项为(  )
A.$\frac{8}{9}$B.-$\frac{6}{7}$C.$\frac{21}{16}$D.$\frac{22}{31}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若复数z=$\frac{a+i}{2i}$(a∈R,i为虚数单位)的实部与虚部相等,则z的模等于$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)是周期为6的偶函数,且当x∈[0,3]时f(x)=3x,则f(2015)=(  )
A.6B.3C.0D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,离心率为$\frac{{\sqrt{3}}}{3}$,点M在椭圆上,且满足MF2⊥x轴,$|{M{F_1}}|=\frac{{4\sqrt{3}}}{3}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线y=kx+2交椭圆于A,B两点,求△ABO(O为坐标原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.
(Ⅰ) 求证:AO⊥BE;
(Ⅱ) 求二面角F-AE-B的余弦值;
(Ⅲ) 若直线CA与平面BEA所成的角的正弦值为$\frac{{2\sqrt{6}}}{5}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C:x2=2py(p>0)的焦点为F,直线2x-y+2=0交抛物线C于A、B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.
(Ⅰ)D是抛物线C上的动点,点E(-1,3),若直线AB过焦点F,求|DF|+|DE|的最小值;
(Ⅱ)是否存在实数p,使|2$\overrightarrow{QA}$+$\overrightarrow{QB}$|=|2$\overrightarrow{QA}$-$\overrightarrow{QB}$|?若存在,求出p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[-$\frac{π}{6}$,$\frac{π}{4}$],记f(x)=$\frac{3}{2}$|$\overrightarrow{a}$+$\overrightarrow{b}$|-$\overrightarrow{a}$•$\overrightarrow{b}$,则f(x)的最小值为(  )
A.2B.$\frac{17}{8}$C.$\frac{{3\sqrt{3}-1}}{2}$D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,F为C的右焦点,A(0,-2),直线FA的斜率为$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求C的方程;
(Ⅱ)设E(x0,y0)是C上一点,从坐标原点O向圆E:(x-x02+(y-y02=3作两条切线,分别与C交于P,Q两点,直线OP,OQ的斜率分别是k1,k2,求证:
(i)k1•k2=-$\frac{1}{3}$;
(ii)|OP|2+|OQ|2是定值.

查看答案和解析>>

同步练习册答案