精英家教网 > 高中数学 > 题目详情
13.如图,平面ABCD⊥平面ABE,四边形ABCD是边长为2的正方形,且点B在平面ACE上的射影F恰好落在边CE上.
(1)求证:AE⊥平面BCE;
(2)当二面角B-AC-E的余弦值为$\frac{\sqrt{3}}{3}$时,求∠BAE的大小.

分析 (1)推导出BF⊥AE,BC⊥AB,从而BC⊥AE,由此能证明AE⊥平面BCE.
(2)以A为原点,垂直于平面ABCD的直线AG为x轴,AB为y轴,AD为z轴,建立空间直角坐标系,利用向量法能求出当二面角B-AC-E的余弦值为$\frac{\sqrt{3}}{3}$时,∠BAE的大小.

解答 证明:(1)∵点B在平面ACE上的射影F恰好落在边CE上,∴BF⊥平面ACE
∵AE?平面ACE,∴BF⊥AE,
∵平面ABCD⊥平面ABE,四边形ABCD是边长为2的正方形,
平面ABCD∩平面ABE=AB,BC?平面ABCD,
∴BC⊥AB,∴BC⊥平面ABE,∴BC⊥AE,
又BC∩BF=B,∴AE⊥平面BCE.
解:(2)以A为原点,垂直于平面ABCD的直线AG为x轴,AB为y轴,AD为z轴,建立空间直角坐标系,
A(0,0,0),C(0,2,2),
设E(a,b,0),则$\overrightarrow{AE}$=(a,b,0),$\overrightarrow{AC}$=(0,2,2),
设平面AEC的一个法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{AE}•\overrightarrow{n}=ax+bx=0}\\{\overrightarrow{AC}•\overrightarrow{n}=2y+2z=0}\end{array}\right.$,取y=a,得$\overrightarrow{n}$=(-b,a,-a),
又平面ABC的一个法向量$\overrightarrow{m}$=(1,0,0),
∵二面角B-AC-E的余弦值为$\frac{\sqrt{3}}{3}$,
∴|cos<$\overrightarrow{m},\overrightarrow{n}$>|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{|-b|}{\sqrt{2{a}^{2}+{b}^{2}}}$=$\frac{\sqrt{3}}{3}$,
解得a2=b2,①
又∵AE⊥平面BCE,BE?平面BCE,∵AE⊥BE,
∴$\overrightarrow{AE}•\overrightarrow{BE}$=a2+b(b-2)=0,②
联立①②,得b=0,(舍,b=1,∴a2=b2=1,
∴AE=BE=2,∴$∠BAE=\frac{π}{4}$.

点评 本题考查线面垂直的证明,考查角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知复数z=$\frac{i}{1+2i}$(i是虚数单位),则z的共轭复数$\overline{z}$=(  )
A.$\frac{2}{5}$-$\frac{1}{5}$iB.-$\frac{2}{5}$+$\frac{1}{5}$iC.-$\frac{2}{5}$-$\frac{1}{5}$iD.$\frac{2}{5}$+$\frac{1}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在复平面内,复数z=($\sqrt{2}$+i)i(i是虚数单位)对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在锐角△ABC中,cosA=$\frac{\sqrt{5}}{5}$,sinB=$\frac{3\sqrt{10}}{10}$.
(1)求角C;
(2)设AB=$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,等腰梯形ABDC内接于圆,过B作腰AC的平行线BE交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.
(Ⅰ)求AC的长;
(Ⅱ)求证:BE=EF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AA1的中点,则点C1到平面BDE的距离为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在函数y=lnx的图象上取点Pn(n,ln n)(n∈N*),记线段PnPn+1的斜率为kn,求证:$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$+…+$\frac{1}{{k}_{n}}$<$\frac{n(n+2)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,直三棱柱ABC-A1B1C1中,AB=AC=AA1=4,BC=$\sqrt{2}$,BD⊥AC,垂足为D,E为棱BB1上的一点,BD∥平面AC1E;
(Ⅰ)求线段B1E的长;
(Ⅱ)求二面角C1-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设a∈R,函数f(x)=ax2-lnx,g(x)=ex-ax.
(1)若函数h(x)=f(x)+2x,讨论h(x)的单调性.
(2)若f(x)•g(x)>0对x∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案