精英家教网 > 高中数学 > 题目详情
5.在函数y=lnx的图象上取点Pn(n,ln n)(n∈N*),记线段PnPn+1的斜率为kn,求证:$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$+…+$\frac{1}{{k}_{n}}$<$\frac{n(n+2)}{2}$.

分析 利用两点的连线的斜率公式得出kn,再利用构造辅助函数,利用函数单调性求得函数的最小值,根据等差数列前n项和公式,即可证明不等式成立.

解答 解:证明:由题意可知线段PnPn+1的斜率为kn,kn=$\frac{ln(n+1)-lnn}{n+1-n}$=ln(1+$\frac{1}{n}$),
构造辅助函数g(x)=lnx-$\frac{2(x-1)}{x+1}$(x≥1),
f′(x)=$\frac{1}{x}$-$\frac{2(x+1)-2(x+1)}{(x+1)^{2}}$=$\frac{(x-1)^{2}}{x(x+1)^{2}}$≥0,
∴f(x)在(1,+∞)单调递增,故f(x)的最小值是f(1)=0,
∴lnx>$\frac{2(x-1)}{x+1}$,
∴ln(1+$\frac{1}{n}$)>$\frac{2(1+\frac{1}{n}-1)}{1+\frac{1}{n}+1}$=$\frac{2}{2n+1}$,
∴$\frac{1}{{k}_{n}}$<$\frac{2n+1}{2}$,
$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$+…+$\frac{1}{{k}_{n}}$<$\frac{1}{2}$($\frac{(3+2n+1)n}{2}$)=$\frac{n(n+2)}{2}$,
因此:$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$+…+$\frac{1}{{k}_{n}}$<$\frac{n(n+2)}{2}$.

点评 本题考查导数的性质的综合运用及运用导数法证明函数与不等式及等差数列的综合问题的处理能力,解题时注意转化思想的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2,-2),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a,b∈R,i是虚数单位,若3+bi与a-i互为共轭复数,则|a+bi|等于(  )
A.$\sqrt{2}$B.5C.$\sqrt{10}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,平面ABCD⊥平面ABE,四边形ABCD是边长为2的正方形,且点B在平面ACE上的射影F恰好落在边CE上.
(1)求证:AE⊥平面BCE;
(2)当二面角B-AC-E的余弦值为$\frac{\sqrt{3}}{3}$时,求∠BAE的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,网格纸上小正方形的边长为l,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为(  )
A.lB.2C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A,B是函数f(x)=$\frac{1}{2}$+log2$\frac{x}{1-x}$的图象上任意两点,且$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OA}$+$\overrightarrow{OB}$),点M($\frac{1}{2}$,m).
(I)求m的值;
(II)若Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+…+f($\frac{n-1}{n}$),n∈N*,且n≥2,求Sn
(III)已知an=$\left\{\begin{array}{l}{\frac{1}{2},n=1}\\{{S}_{n},n≥2}\end{array}\right.$,其中n∈N*.Tn为数列{an}的前项和,若Tn>λ(Sn+1+1)对一切n∈N*都成立,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一锥体的三视图如图所示,则该棱锥的最长棱的棱长为(  )
A.$\sqrt{33}$B.$\sqrt{17}$C.$\sqrt{41}$D.$\sqrt{42}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某空间几何体的三视图如图所示,则此几何体的体积是(  )
A.4B.$\frac{4}{3}$C.2D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.6名同学坐成一排,要求某3人必须相邻,一共有多少种坐法?若某2人不能相邻,一共有多少种不同的站法?

查看答案和解析>>

同步练习册答案