精英家教网 > 高中数学 > 题目详情
14.某空间几何体的三视图如图所示,则此几何体的体积是(  )
A.4B.$\frac{4}{3}$C.2D.$\frac{2}{3}$

分析 由三视图可知:该几何体为四棱锥P-ABCD,其中底面是直角梯形,侧棱PD⊥底面ABCD.利用体积计算公式即可得出.

解答 解:由三视图可知:该几何体为四棱锥P-ABCD,
其中底面是直角梯形,侧棱PD⊥底面ABCD.
则此几何体的体积V=$\frac{1}{3}×$$\frac{2+4}{2}$×2×2=4.
故选:A.

点评 本题考查了三视图的有关计算、四棱锥的体积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在复平面内,复数z=($\sqrt{2}$+i)i(i是虚数单位)对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在函数y=lnx的图象上取点Pn(n,ln n)(n∈N*),记线段PnPn+1的斜率为kn,求证:$\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$+…+$\frac{1}{{k}_{n}}$<$\frac{n(n+2)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,直三棱柱ABC-A1B1C1中,AB=AC=AA1=4,BC=$\sqrt{2}$,BD⊥AC,垂足为D,E为棱BB1上的一点,BD∥平面AC1E;
(Ⅰ)求线段B1E的长;
(Ⅱ)求二面角C1-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,底面ABCD为菱形,点F在AA1上,∠DAB=120°,AA1=AB=3AF=3,$\overrightarrow{{A}_{1}E}$=λ$\overrightarrow{{A}_{1}D}$(0<λ<1).
(1)若CE∥平面BDF,求λ的值;
(2)求平面CDE与平面BDF所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在如图所示的几何体中,四边形BB1C1C是矩形,BB1⊥平面ABC,A1B1∥AB,AB=2A1B1,E是AC的中点.
(1)求证:A1E∥平面BB1C1C;
(2)若AC=BC=2$\sqrt{2}$,AB=2BB1=2,求二面角A-BA1-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某三棱锥的三视图如图所示,则该三棱锥体积是1,四个面的面积中最大的是$\frac{3\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设a∈R,函数f(x)=ax2-lnx,g(x)=ex-ax.
(1)若函数h(x)=f(x)+2x,讨论h(x)的单调性.
(2)若f(x)•g(x)>0对x∈(0,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某地对5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如表所示:
x99.51010.511
y111086m
由表中数据,求得y关于x的线性回归方程为$\hat y$=-3.2x+40,则表中的实数m=5.

查看答案和解析>>

同步练习册答案