精英家教网 > 高中数学 > 题目详情
18.已知集合A={x|x2-5x-6<0},B=$\left\{{x|\frac{3-x}{x+2}>0}\right\}$,则A∩B等于(  )
A.(-1,3)B.(-2,6)C.(2,3)D.(3,6)

分析 先分别求出集合A和B,由此能求出A∩B.

解答 解:∵集合A={x|x2-5x-6<0}={x|-1<x<6},
B=$\left\{{x|\frac{3-x}{x+2}>0}\right\}$={x|-2<x<3},
∴A∩B={x|-1<x<3}=(-1,3).
故选:A.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.过定点P(2,1)作动圆C:x2+y2-2ay+a2-2=0的一条切线,切点为T,则线段PT长的最小值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平行四边形ABCD中,O是对角线交点,下列结论正确的是(  )
A.$\overrightarrow{AB}=\overrightarrow{CD},\overrightarrow{BC}=\overrightarrow{AD}$B.$\overrightarrow{BO}+\overrightarrow{OD}=\overrightarrow{AD}-\overrightarrow{AB}$C.$\overrightarrow{AD}+\overrightarrow{OD}=\overrightarrow{OA}$D.$\overrightarrow{AD}+\overrightarrow{DC}+\overrightarrow{CB}=\overrightarrow{BA}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数$f(x)=\frac{{\sqrt{2}}}{2}cos({2x+\frac{π}{4}})+{sin^2}x$
(1)求f(x)的最小正周期;
(2)当$x∈[{\frac{π}{6},\frac{π}{3}}]$时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.用反证法证明命题:“自然数a,b,c中恰有一个是偶数”时,要做的假设是(  )
A.a,b,c中至少有两个偶数
B.a,b,c中至少有两个偶数或都是奇数
C.a,b,c都是奇数
D.a,b,c都是偶数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A,B,C所对的边分别为a,b,c.若角B是A,C的等差中项,且不等式-x2+8x-12>0的解集为{x|a<x<c},则△ABC的面积等于(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.当n≥2,n∈N*时,求证:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$>$\sqrt{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1、F2,P为椭圆上一点,且PF1⊥PF2,若△PF1F2的面积为9,则b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知某盒中有10个灯泡,其中有8个是正品,2个是次品.现需要从中取出1个正品.若每次只取出1个灯泡,取出后不放回,直到取出2个正品为止.设ξ为摸取的次数,则P(ξ=4)=(  )
A.$\frac{4}{15}$B.$\frac{1}{15}$C.$\frac{28}{45}$D.$\frac{14}{45}$

查看答案和解析>>

同步练习册答案