精英家教网 > 高中数学 > 题目详情
19.在△ABC中,a=10,A=30°,C=45°,则c等于(  )
A.10$\sqrt{2}$B.5$\sqrt{2}$C.5$\sqrt{6}$D.$\frac{10\sqrt{6}}{3}$

分析 直接利用正弦定理化简求解即可.

解答 解:在△ABC中,a=10,A=30°,C=45°,
由正弦定理可得c=$\frac{asinC}{sinA}$=$\frac{10×\frac{\sqrt{2}}{2}}{\frac{1}{2}}$=10$\sqrt{2}$.
故选:A.

点评 本题考查正弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数,f(x)=$\left\{{\begin{array}{l}{x+2,x≤-1}\\{{x^2},-1<x<2}\\{2x,x≥2}\end{array}}$,g(x)=$\frac{{\sqrt{{3^x}-1}}}{x-2}$.
(1)若f(b)=3,求b的值.
(2)求函数g(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.f(x)=$\frac{1}{2}$cos2x+$\frac{1}{{{{cos}^2}x}}$,(cosx≠0)的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.A={1,2,3,4,8},B={4,5,6,8},则A∩B=(  )
A.{4,8}B.{2,4,6,8}C.{1,3,5,7}D.{1,2,3,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a、b、c为△ABC的三个内角A、B、C的对边,$\overrightarrow{m}$=($\sqrt{3}$,-1),$\overrightarrow{n}$=(cosA,sinA),若$\overrightarrow{m}$•$\overrightarrow{n}$=0,且acosB+bcosA=csinC,则B等于(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax-$\frac{2}{x}$-3lnx,其中a为常数.
(Ⅰ)若函数f(x)的图象在点($\frac{2}{3}$,f($\frac{2}{3}$))处的切线与直线x+y-2=0垂直,求函数f(x)在区间[$\frac{3}{2}$,3]上的值域;
(Ⅱ)若函数f(x)在区间[1,+∞)上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=x2-4x+5,在区间[1,m]上的值域为[1,2],则m的取值范围是[2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)是定义在[-1,1]上的奇函数,f(1)=1,且若?a、b∈[-1,1],a+b≠0,恒有$\frac{f(a)+f(b)}{a+b}$>0,
(1)证明:函数f(x)在[-1,1]上是增函数;
(2)若对?x∈[-1,1]及?a∈[-1,1],不等式f(x)≤m2-2am+1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知Sn是等差数列{an}的前n项和,若S6=36,Sn=324,Sn-6=144(n>6),则n等于(  )
A.15B.16C.17D.18

查看答案和解析>>

同步练习册答案