分析 根据余弦的倍角公式结合基本不等式进行求解即可,
解答 解:f(x)=$\frac{1}{2}$cos2x+$\frac{1}{{{{cos}^2}x}}$=f(x)=cos2x+$\frac{1}{{{{cos}^2}x}}$-$\frac{1}{2}$≥2$\sqrt{cos^2x•\frac{1}{cos^2x}}$-$\frac{1}{2}$=2-$\frac{1}{2}$=$\frac{3}{2}$,
当且仅当cos2x=$\frac{1}{{{{cos}^2}x}}$,即cos4x=1,即cosx=±1时取等号,
即函数的最小值为$\frac{3}{2}$,
故答案为:$\frac{3}{2}$.
点评 本题主要考查函数最值的求解,利用基本不等式进行转化是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{5}$ | B. | -$\frac{4}{5}$ | C. | ±$\frac{4}{5}$ | D. | ±$\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 存在x0>0,使得x2≤0 | B. | 若x≤0,则x2≤0 | ||
| C. | 若x>0,则x2≤0 | D. | 存在x0>0,使得x2<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10$\sqrt{2}$ | B. | 5$\sqrt{2}$ | C. | 5$\sqrt{6}$ | D. | $\frac{10\sqrt{6}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com