分析 由题意可知:$\frac{x^2}{k+3}-\frac{y^2}{k-3}=1(k∈R)$表示焦点在x轴上的双曲线,则$\left\{\begin{array}{l}{k+3>0}\\{k-3>0}\end{array}\right.$,即可求得k的取值范围.
解答 解:由题意可知:$\frac{x^2}{k+3}-\frac{y^2}{k-3}=1(k∈R)$表示焦点在x轴上的双曲线,
∴$\left\{\begin{array}{l}{k+3>0}\\{k-3>0}\end{array}\right.$,解得:k>3,
∴则k的取值范围(3,+∞),
故答案为:(3,+∞).
点评 本题主要考查了双曲线的标准方程.考查双曲线焦点位置,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若α∩β=n,m∥n,则m∥α,m∥β | B. | 若m∥α,m⊥n,则n⊥α | ||
| C. | 若m⊥α,m⊥β,则α∥β | D. | 若α⊥β,m⊥α,则m∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com