精英家教网 > 高中数学 > 题目详情
已知椭圆的左、右焦点分别为,P为椭圆 上任意一点,且的最小值为.
(1)求椭圆的方程;
(2)动圆与椭圆相交于A、B、C、D四点,当为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.
(1);(2)当时,矩形ABCD的面积最大,最大面积为.

试题分析:(1)由于(定值)这个条件并结合余弦定理以及的最小值为这个条件可以求出的值,并由已知条件中的值可以求出,并最终求出椭圆的方程;(2)先设出中其中一个点的坐标,然后根据这四点之间的相互对称性将四边形的面积用该点的坐标进行表示,结合这一条件将面积转化为其中一个变量的二次函数,利用二次函数的求最值的思想求出四边形面积的最大值,并可以求出对应的值.
试题解析:(1)因为P是椭圆上一点,所以.
在△中,,由余弦定理得
.
因为,当且仅当时等号成立.
因为,所以.
因为的最小值为,所以,解得.
,所以.所以椭圆C的方程为.
(2)设,则矩形ABCD的面积.
因为,所以.
所以.
因为,所以当时,取得最大值24.
此时.
所以当时,矩形ABCD的面积最大,最大面积为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若处取得极值,求的值;
(2)求的单调区间;
(3)若,函数,若对于,总存在使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的左、右焦点分别为,且椭圆过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点,试判断的大小是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别是椭圆: 的左、右焦点,点在直线上,线段的垂直平分线经过点.直线与椭圆交于不同的两点,且椭圆上存在点,使,其中是坐标原点,是实数.
(Ⅰ)求的取值范围;
(Ⅱ)当取何值时,的面积最大?最大面积等于多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线垂直于点
线段垂直平分线交于点,求点的轨迹的方程;
(Ⅲ)设轴交于点,不同的两点上,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知△ABC的周长为20,且顶点B(0,-4),C(0,4),则顶点A的轨迹方程是(    )
A.(x≠0)B.(x≠0)
C.(x≠0)D.(x≠0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,是椭圆在第一象限上的动点,是椭圆的焦点,的平分线上的一点,且,则的取值范围是         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点为,点在椭圆上,且线段的中点恰好在轴上,,则            .

查看答案和解析>>

同步练习册答案