分析 取AD,BC中点分别为E,F,连接EF,AF,DF,求出EF,判断三棱锥的外接球球心O在线段EF上,连接OA,OC,求出半径,然后求解三棱锥的外接球的面积.
解答
解:取AD,BC中点分别为E,F,连接EF,AF,DF,
由题意知AF⊥DF,AF=CF=3$\sqrt{3}$,
∴EF=$\frac{1}{2}$AD=$\frac{3\sqrt{6}}{2}$,
易知三棱锥的外接球球心O在线段EF上,
连接OA,OC,有R2=AE2+OE2,R2=DF2+OF2,
∴R2=($\frac{3\sqrt{6}}{2}$)2+OE2,R2=32+($\frac{3\sqrt{6}}{2}$-OE)2,
∴R=$\sqrt{15}$
∴三棱锥的外接球的面积为4πR2=60π.
故答案为60π
点评 本小题主要考查球的内接几何体的相关计算问题,对考生的空间想象能力与运算求解能力以及数形结合思想都提出很高要求,本题是一道综合题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{6}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3,4] | B. | [3,4] | C. | (-∞,0)∪(0,4] | D. | (-∞,-1)∪(0,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2] | B. | ($\frac{1}{2}$,1) | C. | (1,2) | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com