精英家教网 > 高中数学 > 题目详情
10.已知命题p:“?x∈[0,1],a≥2x”,命题p:“?x∈R,x2+4x+a=0”,若命题“p∧q”是真命题,则实数a的取值范围是(  )
A.[1,4]B.[2,4]C.[2,+∞)D.[4,+∞)

分析 对于命题p:利用ax在x∈[0,1]上单调递增即可得出a的取值范围,对于命题q利用判别式△≥0即可得出a的取值范围,再利用命题“p∧q”是真命题,则p与q都是真命题,求其交集即可.

解答 解:对于命题p:?x∈[0,1],a≥2x,∴a≥(2xmax,x∈[0,1],∵2x在x∈[0,1]上单调递增,
∴当x=1时,2x取得最大值2,
∴a≥2.
对于命题q:?x∈R,x2+4x+a=0,∴△=42-4a≥0,解得a≤4.
若命题“p∧q”是真命题,则p与q都是真命题,
∴2≤a≤4.
故选:B.

点评 本题考查了指数函数的单调性、一元二次方程有实数根与判别式的关系、简易逻辑的有关知识,考查了计算能力与推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若a,b是异面直线,P是a,b外的一点,有以下四个命题
①过P点一定存在直线l与a,b都相交;
②过P点一定存在平面与a,b都平行;
③过P点可作直线与a,b都垂直;
④过P点可作直线与a,b所成角都等于50°.
这四个命题中正确命题的序号是(  )
A.B.C.③④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E,求点E的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线${\frac{x}{3}^2}-\frac{y^2}{6}=-1$的焦点分别为F1、F2,点P在双曲线上.若∠F1PF2=60°,则△F1PF2的面积为(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$3\sqrt{3}$D.$6\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=log2x与g(x)=($\frac{1}{2}$)x-1在同一直角坐标系中的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3+x2f'(1).
(1)求f'(1)和函数x的极值;
(2)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围;
(3)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在一次实验中,测得(x,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则x与y之间的回归直线方程为(  )
A.$\widehat{y}$=x+1B.$\widehat{y}$=x+2C.$\widehat{y}$=2x+1D.$\widehat{y}$=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若xlog25=1,求5x+5-x=$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知正整数数列{an}对任意p,q∈N*,都有ap+q=ap+aq,若a2=4,则a9=(  )
A.6B.9C.18D.20

查看答案和解析>>

同步练习册答案