| A. | [1,4] | B. | [2,4] | C. | [2,+∞) | D. | [4,+∞) |
分析 对于命题p:利用ax在x∈[0,1]上单调递增即可得出a的取值范围,对于命题q利用判别式△≥0即可得出a的取值范围,再利用命题“p∧q”是真命题,则p与q都是真命题,求其交集即可.
解答 解:对于命题p:?x∈[0,1],a≥2x,∴a≥(2x)max,x∈[0,1],∵2x在x∈[0,1]上单调递增,
∴当x=1时,2x取得最大值2,
∴a≥2.
对于命题q:?x∈R,x2+4x+a=0,∴△=42-4a≥0,解得a≤4.
若命题“p∧q”是真命题,则p与q都是真命题,
∴2≤a≤4.
故选:B.
点评 本题考查了指数函数的单调性、一元二次方程有实数根与判别式的关系、简易逻辑的有关知识,考查了计算能力与推理能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ① | B. | ② | C. | ③④ | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | $3\sqrt{3}$ | D. | $6\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\widehat{y}$=x+1 | B. | $\widehat{y}$=x+2 | C. | $\widehat{y}$=2x+1 | D. | $\widehat{y}$=x-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com