15£®¼×³§¸ù¾ÝÒÔÍùµÄÉú²úÏúÊÛ¾­ÑéµÃµ½ÏÂÃæÓйØÉú²úÏúÊÛµÄͳ¼Æ¹æÂÉ£ºÃ¿Éú²ú²úÆ·x£¨°Ų̀£©£¬Æä×ܳɱ¾ÎªG£¨x£©£¨ÍòÔª£©£¬ÆäÖй̶¨³É±¾Îª3ÍòÔª£¬²¢ÇÒÿÉú²ú1°Ų̀µÄÉú²ú³É±¾Îª1ÍòÔª£¨×ܳɱ¾=¹Ì¶¨³É±¾+Éú²ú³É±¾£©£¬ÏúÊÛÊÕÈëR£¨x£©=$\left\{\begin{array}{l}{-0.4{x}^{2}+4.2x+0.2£¨0¡Üx¡Ü5£©}\\{11.2£¨x£¾5£©}\end{array}\right.$£¬¼Ù¶¨¸Ã²úÆ·²úÏúƽºâ£¨¼´Éú²úµÄ²úÆ·¶¼ÄÜÂôµô£©£¬¸ù¾ÝÉÏÊöͳ¼Æ¹æÂÉ£¬ÇëÍê³ÉÏÂÁÐÎÊÌ⣺
£¨1£©Ð´³öÀûÈóº¯Êýy=f£¨x£©µÄ½âÎöʽ£¨ÀûÈó=ÏúÊÛÊÕÈë-×ܳɱ¾£©£»
£¨2£©¼×³§Éú²ú¶àÉŲ̀вúƷʱ£¬¿ÉʹӯÀû×î¶à£¿

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃf£¨x£©=R£¨x£©-G£¨x£©£¬¶ÔxÌÖÂÛ0¡Üx¡Ü5£¬x£¾5¼´¿ÉµÃµ½£»
£¨2£©·Ö±ðÌÖÂÛ0¡Üx¡Ü5£¬x£¾5µÄº¯ÊýµÄµ¥µ÷ÐÔ£¬¼´¿ÉµÃµ½×î´óÖµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃG£¨x£©=3+x£¬
ÓÉR£¨x£©=$\left\{\begin{array}{l}{-0.4{x}^{2}+4.2x+0.2£¨0¡Üx¡Ü5£©}\\{11.2£¨x£¾5£©}\end{array}\right.$£¬
¡àf£¨x£©=R£¨x£©-G£¨x£©=$\left\{\begin{array}{l}{-0.4{x}^{2}+3.2x-2.8£¬0¡Üx¡Ü5}\\{8.2-x£¬x£¾5}\end{array}\right.$£¬
£¨2£©µ±x£¾5ʱ£¬¡ßº¯Êýy=f£¨x£©µÝ¼õ£¬
¡àf£¨x£©£¼8.2-5=3.2£¨ÍòÔª£©£¬
µ±0¡Üx¡Ü5ʱ£¬f£¨x£©=-0.4£¨x-4£©2+3.6£¬
µ±x=4ʱ£¬f£¨x£©ÓÐ×î´óֵΪ3.6£¨ÍòÔª£©£®
´ð£ºµ±¹¤³§Éú²ú4°Ų̀ʱ£¬¿ÉʹӮÀû×î´óΪ3.6£¨ÍòÔª£©£®

µãÆÀ ±¾Ì⿼²é·Ö¶Îº¯ÊýµÄÇ󷨺ÍÔËÓãºÇóµ¥µ÷ÐÔºÍ×îÖµ£¬¿¼²éÒ»´Îº¯ÊýºÍ¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔ¼°×îÖµ£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÈôÃüÌâp£ºx¡ÊR£¬x2-x-1£¼0£¬Ôò©Vp£ºx¡ÊR£¬x2-x-1£¾0£®
B£®ÃüÌ⣺¡°Èôx2=1£¬Ôòx=1»òx=-1¡±µÄÄæ·ñÃüÌâÊÇ£º¡°Èôx¡Ù1ÇÒx¡Ù-1£¬Ôòx2¡Ù1¡±
C£®¡°$¦Õ=\frac{¦Ð}{2}$¡±ÊÇ¡°y=sin£¨2x+¦Õ£©ÎªÅ¼º¯Êý¡±µÄ³äÒªÌõ¼þ
D£®ÃüÌâp£ºÈô$\overrightarrow{a}$=£¨2£¬1£©£¬$\overrightarrow{b}$=£¨-1£¬k2-2£©£¬Ôòk=2ÊÇ$\overrightarrow{a}¡Í\overrightarrow{b}$µÄ³ä·Ö²»±ØÒªÌõ¼þ£»ÃüÌâq£ºÈôÃݺ¯Êýf£¨x£©=xa£¨a¡ÊR£©µÄͼÏó¹ýµã£¨2£¬$\frac{\sqrt{2}}{2}$£©£¬Ôòf£¨4£©=$\frac{1}{2}$£¬Ôòp¡Å£¨©Vq£©ÊǼÙÃüÌâ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬AC¡ÍBC£¬CC1=4£¬MÊÇÀâCC1µÄÖе㣮
£¨1£©ÇóÖ¤£ºBC¡ÍAM£»
£¨2£©ÈôNÊÇABµÄÖе㣬ÇóÖ¤CN¡ÎÆ½ÃæAB1M£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ò»¸ö¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£º
£¨1£©»­³ö¸Ã¼¸ºÎÌåµÄÖ±¹Ûͼ£®
£¨2£©Çó¸Ã¼¸ºÎÌåµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®¶ÔÓÚº¯Êýf£¨x£©µÄ¶¨ÒåÓòÖÐÈÎÒâµÄx1¡¢x2£¨x1¡Ùx2£©£¬ÓÐÈçϽáÂÛ£º
¢Ùf£¨x1+x2£©=f£¨x1£©•f£¨x2£©£»
¢Úf£¨x1•x2£©=f£¨x1£©+f£¨x2£©£»
¢Û$\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¾0£»
¢Üf£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©£¼$\frac{f£¨{x}_{1}£©+f£¨{x}_{2}£©}{2}$£®
µ±f£¨x£©=2xʱ£¬ÉÏÊö½áÂÛÖÐÕýÈ·µÄÓУ¨¡¡¡¡£©¸ö£®
A£®3B£®2C£®1D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®µãM£¨2£¬1£©¹ØÓÚÖ±Ïßx+y+1=0µÄ¶Ô³ÆµãµÄ×ø±êÊÇ£¨-2£¬-3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}-4£¬x£¾0}\\{-x-3£¬x£¼0}\end{array}\right.$£¬Èôf£¨a£©£¾f£¨1£©£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇa£¾1»òa£¼-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èô¼¯ºÏA={1£¬2£¬3£¬4£¬5}ÇÒ¶ÔÓ¦¹ØÏµf£ºx¡úy=x£¨x-4£©ÊÇ´ÓAµ½BµÄÓ³É䣬Ôò¼¯ºÏBÖÐÖÁÉÙÓУ¨¡¡¡¡£©¸öÔªËØ£®
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®É躯Êýf£¨x£©=ax2+bx+c£¨a¡Ù0£©£¬¶ÔÈÎÒâʵÊýt¶¼ÓÐf£¨2+t£©=f£¨2-t£©³ÉÁ¢£¬¸ø³öÒÔÏÂ˵·¨£º
£¨1£©b=-4a£»
£¨2£©µ±a£¾0ÇÒ$\frac{m+n}{2}$£¾2ʱ£¬f£¨x£©ÔÚÇø¼ä[n£¬m]ÉϵÄ×î´óֵΪf£¨m£©£»
£¨3£©ÎÞÂÛaÈçºÎȡֵ£¬º¯ÊýÖµf£¨1£©£¬f£¨-1£©£¬f£¨$\frac{5}{2}$£©ÖУ¬×îСµÄÒ»¸ö²»¿ÉÄÜÊÇf£¨1£©£®
ÆäÖÐÕýÈ·µÄ¸öÊýΪ£¨¡¡¡¡£©
A£®0B£®1C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸