精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面的中点.

1)证明

2)若

i)求直线与平面所成角的正弦值;

ii)设平面与侧棱交于,求.

【答案】1)见解析;(2)(i;(ii

【解析】

1)证明即可证,从而得到结论;

2)(i)以为原点,轴,轴,轴建立空间直角坐标系,求出相关点和向量的坐标,列方程求出面的法向量为,最后利用公式即可得到结果;(ii)根据(i)的结论,设,则,由此计算得到,又,求出,从而得到结果.

1)因为平面,所以

因为,所以,因为平面,所以

2)(i)以为原点,轴,轴,轴建立空间直角坐标系:

所以.

设面的法向量为,则,所以

设直线与面所成角为

故直线与平面所成角的正弦值为

ii,设

所以,则

,所以,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为35,第三行为7911,第四行为13151719,如图所示,在宝塔形数表中位于第行,第列的数记为,比如,若,则

A.64B.65C.71D.72

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的极值;

(Ⅱ)若实数为整数,且对任意的时,都有恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数满足是它的零点,则函数有趣的,例如就是有趣的,已知有趣的”.

1)求出bc并求出函数的单调区间;

2)若对于任意正数x,都有恒成立,求参数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,过点的直线分别交于不同的两点,直线恒过点

1)证明:直线的斜率之和为定值;

(2)直线分别与轴相交于两点,在轴上是否存在定点,使得为定值?若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的最大值为3,其图象相邻两条对称轴之间的距离为.

(Ⅰ)求函数的解析式和当的单调减区间;

(Ⅱ)的图象向右平行移动个长度单位,再向下平移1个长度单位,得到的图象,用“五点法”作出内的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面为正方形,且.若四棱锥的每个顶点都在球的球面上,则球的表面积的最小值为_____;当四棱锥的体积取得最大值时,二面角的正切值为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学经典名著,其中有这样一个问题:今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?其意为:今有-圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该木材,锯口深一寸,锯道长-尺.问这块圆柱形木材的直径是多少?现有长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦尺,弓形高寸,估算该木材镶嵌在墙体中的体积约为__________立方寸.(结果保留整数)

注:l丈=10尺=100寸,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构为了解人们某个产品的使用情况是否与性别有关,在网上进行了问卷调查,在调查结果中随机抽取了50份进行统计,得到如下列联表:

男性

女性

合计

使用

15

5

20

不使用

10

20

30

合计

25

25

50

1)请根据调查结果分①析:你有多大把握认为使用该产品与性别有关;

2)在不使用该产品的人中,按性别用分层抽样抽取6人,再从这6人中随机抽取2人参加某项活动,求这2人中恰有一位女性的概率.

附:

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案