【题目】如图,在四棱锥中,底面,,,,是的中点.
(1)证明;
(2)若,
(i)求直线与平面所成角的正弦值;
(ii)设平面与侧棱交于,求.
科目:高中数学 来源: 题型:
【题目】已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第行,第列的数记为,比如,,,若,则( )
A.64B.65C.71D.72
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果函数满足且是它的零点,则函数是“有趣的”,例如就是“有趣的”,已知是“有趣的”.
(1)求出b、c并求出函数的单调区间;
(2)若对于任意正数x,都有恒成立,求参数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆,过点的直线,分别交于不同的两点、,直线恒过点
(1)证明:直线,的斜率之和为定值;
(2)直线,分别与轴相交于,两点,在轴上是否存在定点,使得为定值?若存在,求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的最大值为3,其图象相邻两条对称轴之间的距离为.
(Ⅰ)求函数的解析式和当时的单调减区间;
(Ⅱ)的图象向右平行移动个长度单位,再向下平移1个长度单位,得到的图象,用“五点法”作出在内的大致图象.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,,平面,底面为正方形,且.若四棱锥的每个顶点都在球的球面上,则球的表面积的最小值为_____;当四棱锥的体积取得最大值时,二面角的正切值为_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代数学经典名著,其中有这样一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有-圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该木材,锯口深一寸,锯道长-尺.问这块圆柱形木材的直径是多少?现有长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦尺,弓形高寸,估算该木材镶嵌在墙体中的体积约为__________立方寸.(结果保留整数)
注:l丈=10尺=100寸,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某调查机构为了解人们某个产品的使用情况是否与性别有关,在网上进行了问卷调查,在调查结果中随机抽取了50份进行统计,得到如下列联表:
男性 | 女性 | 合计 | |
使用 | 15 | 5 | 20 |
不使用 | 10 | 20 | 30 |
合计 | 25 | 25 | 50 |
(1)请根据调查结果分①析:你有多大把握认为使用该产品与性别有关;
(2)在不使用该产品的人中,按性别用分层抽样抽取6人,再从这6人中随机抽取2人参加某项活动,求这2人中恰有一位女性的概率.
附:
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com