【题目】《九章算术》是我国古代数学经典名著,其中有这样一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有-圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该木材,锯口深一寸,锯道长-尺.问这块圆柱形木材的直径是多少?现有长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦尺,弓形高寸,估算该木材镶嵌在墙体中的体积约为__________立方寸.(结果保留整数)
注:l丈=10尺=100寸,,.
科目:高中数学 来源: 题型:
【题目】如图,已知等腰梯形中,是的中点,,将沿着翻折成,使平面平面.
(Ⅰ)求证:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在线段上是否存在点P,使得平面,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余1且被4除余1的数按从小到大的顺序排成一列,构成数列,则此数列的项数为( )
A.167B.168C.169D.170
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似地,我们在复数集C上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数:当且仅当“”或“”且“”.按上述定义的关系“>”,给出以下四个命题:
①若,则;
②若,则;
③若,则对于任意;
④对于复数,若,则.
其中所有真命题的序号为______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某椭圆C,它的中心在坐标原点,左焦点为F(﹣,0),且过点D(2,0).
(1)求椭圆C的标准方程;
(2)若已知点A(1,),当点P在椭圆C上变动时,求出线段PA中点M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数图象两条相邻的对称轴间的距离为.
(1)求的值;
(2)将函数的图象沿轴向左平移个单位长度后,再将得到的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数的图象,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点的椭圆C1和抛物线C2有相同的焦点(1,0),椭圆C1过点,抛物线的顶点为原点.
(1)求椭圆C1和抛物线C2的方程;
(2)设点P为抛物线C2准线上的任意一点,过点P作抛物线C2的两条切线PA,PB,其中A、B为切点.
设直线PA,PB的斜率分别为k1,k2,求证:k1k2为定值;
②若直线AB交椭圆C1于C,D两点,S△PAB,S△PCD分别是△PAB,△PCD的面积,试问:是否有最小值?若有,求出最小值;若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】石嘴山市第三中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:
(1)根据茎叶图求甲乙两位同学成绩的中位数,并将同学乙的成绩的频率分布直方图填充完整;
(2)根据茎叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可);
(3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,记事件为“其中2个成绩分别属于不同的同学”,求事件发生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com