14£®ÓÐÏÂÁÐÃüÌ⣺
¢Ù¡°m£¾0¡±ÊÇ¡°·½³Ìx2+my2=1±íʾÍÖÔ²¡±µÄ³äÒªÌõ¼þ£»
¢Ú¡°a=1¡±ÊÇ¡°Ö±Ïßl1£ºax+y-1=0ÓëÖ±Ïßl2£ºx+ay-2=0ƽÐС±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
¢Û¡°º¯Êýf £¨x£©=x3+mxµ¥µ÷µÝÔö¡±ÊÇ¡°m£¾0¡±µÄ³äÒªÌõ¼þ£»
¢ÜÒÑÖªp£¬qÊÇÁ½¸ö²»µÈ¼ÛÃüÌ⣬Ôò¡°p»òqÊÇÕæÃüÌ⡱ÊÇ¡°pÇÒqÊÇÕæÃüÌ⡱µÄ±ØÒª²»³ä·ÖÌõ¼þ£®
ÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅÊǢڢܣ®

·ÖÎö ¢Ù£¬µ±m=1ʱ£¬·½³Ìx2+my2=1±íʾԲ£»
¢Ú£¬¡ßa=¡À1ʱ£¬Ö±Ïßl1ÓëÖ±Ïßl2¶¼Æ½ÐУ»         
¢Û£¬Èôº¯Êýf £¨x£©=x3+mxµ¥µ÷µÝÔö⇒m¡Ý0£»
¢Ü£¬p»òqÊÇÕæÃüÌâ⇒pÇÒq²»Ò»¶¨ÊÇÕæÃüÌ⣻⇒pÇÒqÊÇÕæÃüÌâ⇒p»òqÒ»¶¨ÊÇÕæÃüÌ⣻

½â´ð ½â£º¶ÔÓÚ¢Ù£¬µ±m=1ʱ£¬·½³Ìx2+my2=1±íʾԲ£¬¹Ê´í£»
¶ÔÓÚ¢Ú£¬¡ßa=¡À1ʱ£¬Ö±Ïßl1ÓëÖ±Ïßl2¶¼Æ½ÐУ¬¹ÊÕýÈ·£»         
¶ÔÓÚ¢Û£¬Èôº¯Êýf £¨x£©=x3+mxµ¥µ÷µÝÔö⇒m¡Ý0£¬¹Ê´í£»
¶ÔÓڢܣ¬p»òqÊÇÕæÃüÌâ⇒pÇÒq²»Ò»¶¨ÊÇÕæÃüÌ⣻⇒pÇÒqÊÇÕæÃüÌâ⇒p»òqÒ»¶¨ÊÇÕæÃüÌ⣬¹ÊÕýÈ·£»
¹Ê´ð°¸Îª£º¢Ú¢Ü

µãÆÀ ±¾Ì⿼²éÁËÃüÌâµÄÕæ¼Ù£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÏÂÁк¯ÊýÔÚÇø¼ä[0£¬1]Éϵ¥µ÷µÝÔöµÄÊÇ£¨¡¡¡¡£©
A£®y=|lnx|B£®y=-lnxC£®y=2-xD£®y=2|x|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®È«¼¯U={-1£¬0£¬1£¬2£¬3£¬4£¬5£¬6 }£¬A={3£¬4£¬5 }£¬B={1£¬3£¬6 }£¬ÄÇô¼¯ºÏ{ 2£¬-1£¬0}ÊÇ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{3}$B£®$\frac{3}{5}$C£®UA¡É∁UBD£®$-\frac{3}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Ä³Í¬Ñ§ÔÚÀûÓá°Îåµã·¨¡±×÷º¯Êýf£¨x£©=Asin£¨¦Øx+ϕ£©+t£¨ÆäÖÐA£¾0£¬$¦Ø£¾0£¬|ϕ|£¼\frac{¦Ð}{2}$£©µÄͼÏóʱ£¬ÁгöÁËÈç±í¸ñÖеIJ¿·ÖÊý¾Ý£®
x$-\frac{¦Ð}{4}$        $\frac{¦Ð}{12}$        $\frac{5¦Ð}{12}$$\frac{3¦Ð}{4}$$\frac{13¦Ð}{12}$                     
¦Øx+ϕ0$\frac{¦Ð}{2}$¦Ð$\frac{3¦Ð}{2}$2¦Ð
f£¨x£©2             6                2          -22
£¨1£©Ç뽫±í¸ñ²¹³äÍêÕû£¬²¢Ð´³öf£¨x£©µÄ½âÎöʽ£®
£¨2£©Èô$x¡Ê[-\frac{5¦Ð}{12}£¬\frac{¦Ð}{4}]$£¬Çóf£¨x£©µÄ×î´óÖµÓë×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑ֪ʵÊýx£¬yÂú×ãÌõ¼þ$\left\{\begin{array}{l}x+y-2¡Ý0\\ x-y¡Ü0£¬y¡Ü3\end{array}$Ôòz=2x+yµÄ×î´óÖµÊÇ9£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬Á½¸ö¶¥µã·Ö±ðΪA£¨-a£¬0£©£¬B£¨a£¬0£©£¬µãM£¨-1£¬0£©£¬ÇÒ3$\overrightarrow{AM}$=$\overrightarrow{MB}$£¬¹ýµãMбÂÊΪk£¨k¡Ù0£©µÄÖ±Ïß½»ÍÖÔ²EÓÚC£¬DÁ½µã£¬ÆäÖеãCÔÚxÖáÉÏ·½£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÈôBC¡ÍCD£¬ÇókµÄÖµ£»
£¨3£©¼ÇÖ±ÏßAD£¬BCµÄбÂÊ·Ö±ðΪk1£¬k2£¬ÇóÖ¤£º$\frac{{k}_{1}}{{k}_{2}}$Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èô¹ýµã£¨-2£¬0£©µÄÖ±Ïßl±»Ô²C£º$\left\{\begin{array}{l}{x=4+2\sqrt{3}cos¦È}\\{y=2\sqrt{3}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©Ëù½ØµÃµÄÏ߶εij¤µÈÓÚ2$\sqrt{3}$£¬ÔòÖ±ÏßlµÄÇãб½ÇµÄȡֵ¼¯ºÏΪ{$\frac{¦Ð}{6}$£¬$\frac{5¦Ð}{6}$}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÉèË«ÇúÏß$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÉÏ¡¢Ï½¹µã·Ö±ðΪF1£¬F2£¬¹ýµãF1µÄÖ±ÏßÓëË«ÇúÏß½»ÓÚP£¬QÁ½µã£¬ÇÒ|QF1|-|PF1|=2a£¬$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0£¬Ôò´ËË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®3B£®$\sqrt{5}$C£®$\frac{5}{2}$D£®$\frac{\sqrt{10}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªE£¬FΪ˫ÇúÏß$C£º\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$µÄ×óÓÒ½¹µã£¬Å×ÎïÏßy2=2px£¨p£¾0£©ÓëË«ÇúÏßÓй«¹²µÄ½¹µãF£¬ÇÒÓëË«ÇúÏß½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬Èô$|AF|=\frac{4}{5}|BE|$£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ$4¡À\sqrt{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸