分析 (1)连结DB交AC于点O,只需证明AC⊥DB,得到AC⊥面PDB,即可证明PB⊥面ACE
(2)如图建立空间直角坐标系D-xyz,则D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),P(0,0,2)
由(1)得面DPB的法向量为$\overrightarrow{A}=(-1,1,0)$.求出面APB的法向量,利用向量夹角公式即可求解.
解答 解:(1)证明:连结DB交AC于点O,∵四边形ABCD为正方形,∴AC⊥DB
又∵PD⊥面ABCD,∴PD⊥AC,且PD∩DB=D,∴AC⊥面PDB,
∴AC⊥PB,又∵AE⊥PB,AE∩AC=A,∴PB⊥面ACE![]()
(2)如图建立空间直角坐标系D-xyz,
则D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),P(0,0,2)
由(1)得面DPB的法向量为$\overrightarrow{A}=(-1,1,0)$.
设面APB的法向量为$\overrightarrow{m}=(x,y,z)$,$\overrightarrow{AB}=(0,1,0)$$\overrightarrow{AP}=(-1,0,2)$.
$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=y=0}\\{\overrightarrow{m}•\overrightarrow{AP}=-x+2z=0}\end{array}\right.$,可取$\overrightarrow{m}=(2,0,1)$,
cos<$\overrightarrow{m},\overrightarrow{AC}$>=-$\frac{\sqrt{10}}{5}$,
设二面角A-PB-D为θ,θ的正切值tanθ=$\sqrt{2}$.
点评 本题考查了空间线面垂直的判定,向量法求二面角,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m>n,则$\frac{n+a}{m+a}$<$\frac{n}{m}$ | B. | a+$\frac{9}{a+2}$≥4 | ||
| C. | a2+$\frac{1}{{a}^{2}}$≥a+$\frac{1}{a}$ | D. | 若函数f(x)=|1-x2|,则f(ax)-a2f(x)≤f(a) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com