精英家教网 > 高中数学 > 题目详情
设a,b随机取自集合{1,2,3},则直线ax+by+3=0与圆x2+y2=1有公共点的概率是________.
若直线ax+by+3=0与圆x2+y2=1有公共点,则圆心到直线的距离小于或等于半径,则≤1,即a2+b2≥9.当a=1时,b2≥8,此时b=3,有1组;当a=2时,b2≥5,此时b=3,有1组;当a=3时,b2≥0,此时b=1,2,3,有3组.所以满足条件的a,b组合共有5组,a,b所有的组合有9组.故满足条件的概率为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

一个袋中装有若干个大小相同的黑球、白球和红球,已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.
(1)若袋中共有10个球,
①求白球的个数;
②从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列.
(2)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于,并指出袋中哪种颜色的球的个数最少.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某数学老师对本校2013届高三学生某次联考的数学成绩进行分析,按1:50进行分层抽样抽取的20名学生的成绩进行分析,分数用茎叶图记录如图所示(部分数据丢失),得到频率分布表如下:


(1)求表中的值及分数在范围内的学生数,并估计这次考试全校学生数学成绩及格率(分数在范围为及格);
(2)从大于等于110分的学生中随机选2名学生得分,求2名学生的平均得分大于等于130分的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

袋中有4个红球,3个黑球,从袋中随机地抽取4个球,设取到1个红球得2分,取到1个黑球得1分.
(1)求得分X的分布列;(2)求得分大于6的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是   ,他属于不超过2个小组的概率是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

连续抛掷两枚正方体骰子(它们的六个面分别标有数字1,2,3,4,5,6),记所得朝上的面的点数分别为xy,过坐标原点和点P(xy)的直线的倾斜角为θ,则θ>60°的概率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

甲、乙、丙三人参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了解某班学生喜爱打篮球是否与性别有关,对本班48人进行了问卷调查得到了如下的2×2列联表:
 
喜爱打篮球
不喜爱打篮球
合计
男生
 
6
 
女生
10
 
 
合计
 
 
48
已知在全班48人中随机抽取1人,抽到喜爱打篮球的学生的概率为.
(1)请将上面的2×2列联表补充完整(不用写计算过程);
(2)你是否有95%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为X,求X的分布列与数学期望.
下面的临界值表供参考:
P(χ2x0)或
P(K2k0)
0.10
0.05
0.010
0.005
x0(或k0)
2.706
3.841
6.635
7.879
 
(参考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

查看答案和解析>>

同步练习册答案