精英家教网 > 高中数学 > 题目详情

下面是一段演绎推理:
如果直线平行于平面,则这条直线平行于平面内的所有直线;
已知直线平面,直线平面
所以直线直线,在这个推理中(   )

A.大前提正确,结论错误
B.小前提与结论都是错误的
C.大、小前提正确,只有结论错误
D.大前提错误,结论错误

D

解析试题分析:如果直线平行于平面,则这条直线只是与平面内的部分直线平行,而不是所有直线,所以大前提错误,当直线平面,直线平面时,直线与直线可能平行,也可能异面,故结论错误,选D.
考点:演绎推理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

用反证法证明命题:若整数系数的一元二次方程 有有理实数根,那么中至少有一个是偶数,下列假设中正确的是(    )

A.假设都是偶数
B.假设都不是偶数
C.假设至多有一个是偶数
D.假设至多有两个偶数

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:
,这与三角形内角和为相矛盾,不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角中有两个直角,不妨设,正确顺序的序号为

A.①②③B.③①②C.①③②D.②③①

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

观察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49

照此规律,第n个等式为 _________ .

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

圆周上2个点可连成1条弦,这条弦可将圆面划分成2部分;圆周上3个点可连成3条弦,这3条弦可将圆面划分成4部分;圆周上4个点可连成6条弦,这6条弦最多可将圆面划分成8部分.则这些弦最多可把圆面分成 (  ) 部分

A.2n-1 B.2n C.2n+1 D.2n+2

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N)能被9整除”,要利
用归纳法假设证nk+1时的情况,只需展开(  ).

A.(k+3)3B.(k+2)3
C.(k+1)3D.(k+1)3+(k+2)3

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在用数学归纳法证明凸n边形内角和定理时,第一步应验证(  )

A.n=1时成立B.n=2时成立
C.n=3时成立D.n=4时成立

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,模块①~⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①~⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体,则下列选择方案中,能够完成任务的为(  )

A.模块①,②,⑤ B.模块①,③,⑤
C.模块②,④,⑤ D.模块③,④,⑤

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图是2012年元宵节灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是(  )

查看答案和解析>>

同步练习册答案