精英家教网 > 高中数学 > 题目详情
已知圆A:(x+2)2+y2=36,圆A内一定点B(2,0),圆P过B点且与圆A内切,则圆心P的轨迹为(  )
A.圆B.椭圆C.直线D.以上都不对
设动圆圆心P(x,y),半径为r,⊙A的圆心为A(-2,0),半径为6,
又因为动圆过点B,所以r=|PB|,
若动圆P与⊙A相内切,则有|PA|=6-r=6-|PB|,即|PA|+|PB|=6>|AB|=4
故P点的轨迹为以A和B为焦点的椭圆,且a=3,c=2.
故选:B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆G:经过椭圆的右焦点F及上顶点B,过椭圆外一点(m,0)()倾斜角为的直线L交椭圆与C、D两点.
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知坐标平面内⊙C:(x+1)2+y2=
1
4
,⊙D:(x-1)2+y2=
49
4
.动圆P与⊙C外切,与⊙D内切.
(1)求动圆圆心P的轨迹C1的方程;
(2)若过D点的斜率为2的直线与曲线C1交于两点A、B,求AB的长;
(3)过D的动直线与曲线C1交于A、B两点,线段AB中点为M,求M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知m∈R,则动圆x2+y2+4mx-2my+6m2-4=0的圆心的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,点P为双曲线上任意一点,过F1作∠F1PF2的平分线的垂线,垂足为Q,则点Q的轨迹方程为(  )
A.x2+y2=a2B.x2+y2=b2C.x2-y2=a2D.x2-y2=b2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点M与点F(3,0)的距离比它到直线x+1=0的距离多2,则点M的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

动点P(x,y)(x≥0)到点F(1,0)的距离与点P到y轴的距离差为1,则点P的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线y=kx+1(k∈R)与焦点在x轴上的椭圆恒有公共点,则t的取值范围是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点M(-2,0)的直线l与椭圆x2+2y2=2交于P1,P2,线段P1P2的中点为P.设直线l的斜率为k1(k1≠0),直线OP(O为坐标原点)的斜率为k2,则k1k2等于(  )
A.-2B.2C.-D.

查看答案和解析>>

同步练习册答案