精英家教网 > 高中数学 > 题目详情

函数定义如下:对任意,当为有理数时,;当为无理数时,;则称函数为定义在实数上的狄利克雷拓展函数.下列关于函数说法错误的是(    )

A.的值域为

B.是偶函数

C.是周期函数且的一个周期

D.在实数集上的任何区间都不是单调函数

 

【答案】

C

【解析】

试题分析:依题意,函数;显然是周期函数,任意的有理数都是的周期,但任意的无理数都不是的周期,故选C。

考点:本题主要考查学习能力,周期函数的概念。

点评:简单题,在理解所定义函数的基础上,结合函数的奇偶性、周期性解答。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f(
x1+x2
2
) ≤
1
2
[f(x1) +f(x2) ]
则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:
①f(x)在[1,3]上的图象是连续不断的;
②f(x2)在[1,
3
]上具有性质P;
③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
④对任意x1,x2,x3,x4∈[1,3],有f(
x1+x2+x3+x4
4
) ≤
1
4
[f(x1)+f(x2)+f(x3)+f(x4)]
其中真命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

我们给出如下定义:对函数y=f(x),x∈D,若存在常数C(C∈R),对任意的x1∈D,存在唯一的x2∈D,使得
f(x1)+f(x2)
2
=C
,则称函数f(x)为“和谐函数”,称常数C为函数f(x)的“和谐数”.
(1)判断函数f(x)=x+1,x∈[-1,3]是否为“和谐函数”?答:
.(填“是”或“否”)如果是,写出它的一个“和谐数”:
2
2

(2)请先学习下面的证明方法:
证明:函数g(x)=lgx,x∈[10,100]为“和谐函数”,
3
2
是其“和谐数”.
证明过程如下:对任意x1∈[10,100],令
g(x1)+g(x2)
2
=
3
2
,即
lgx1+lgx2
2
=
3
2

x2=
1000
x1
.∵x1∈[10,100],∴x2=
1000
x1
∈[10,100]
.即对任意x1∈[10,100],存在唯一的x2=
1000
x1
∈[10,100]
,使得
g(x)+g(x2)
2
=
3
2
.∴g(x)=lgx为“和谐函数”,
3
2
是其“和谐数”.
参照上述证明过程证明:函数h(x)=2x,x∈(1,3)为“和谐函数”;
(3)写出一个不是“和谐函数”的函数,并作出证明.

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(福建卷解析版) 题型:选择题

函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:

①f(x)在[1,3]上的图像是连续不断的;

②f(x)在[1,]上具有性质P;

③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];

④对任意x1,x2,x3,x4∈[1,3],有

其中真命题的序号是

A、①②           B.①③                C.②④             D.③④

 

查看答案和解析>>

科目:高中数学 来源:2012学年浙江省杭州七校高一第二学期期中联考数学试卷(解析版) 题型:选择题

给出下列命题:①是函数的一个对称中心;②若是第一象限角,且,则;③函数是偶函数;④定义平面向量之间的一种新运算“”如下:对任意的,若,则;其中正确命题的序号是( ▲ )

(A) ①③④      (B) ①③   (C) ②③④       (D) ①②③

 

查看答案和解析>>

同步练习册答案