分析 根据f(x)=$\sqrt{(x+3)^{2}+(y-5)^{2}}$+$\sqrt{(x-2)^{2}+(y-15)^{2}}$的几何意义求出其最小值即可得出结论.
解答 解:∵$\sqrt{(x+3)^{2}+(y-5)^{2}}$是点A(x,y)和点B(-3,5)间的距离,$\sqrt{(x-2)^{2}+(y-15)^{2}}$是点A(x,y)和点C(2,15)间的距离,容易验证出:点A、B都不在直线3x-4y+4=0上,且在异侧.
∴|AB|+|AC|≧|BC|=$\sqrt{(-3-2)^{2}+(5-15)^{2}}$=5$\sqrt{5}$,
∴f(x)=$\sqrt{(x+3)^{2}+(y-5)^{2}}$+$\sqrt{(x-2)^{2}+(y-15)^{2}}$取得最小值5$\sqrt{5}$,
此时直线BC的方程为y-5=$\frac{15-5}{2+3}$(x+3),即2x-y+11=0,
与3x-4y+4=0联立,可得x=-8,y=-5,
∴M(-8,-5).
故答案为:(-8,-5).
点评 本题考查两点间的距离公式,考查几何意义的运用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 6 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜欢打篮球 | 不喜欢打篮球 | 合计 | |
| 男生 | 5 | ||
| 女生 | 10 | ||
| 合计 | 50 |
| P(K2≥k1) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k1 | 2.706 | 3.841 | 5.024 | 6.6335 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com