精英家教网 > 高中数学 > 题目详情
5.已知抛物线C:x2=8y,过点M(0,t)(t<0)可作抛物线C的两条切线,切点分别为A,B,若直线AB恰好过抛物线C的焦点,则△MAB的面积为(  )
A.2B.3C.6D.16

分析 利用切点分别为A,B,若直线AB恰好过抛物线C的焦点,求出A,B的坐标,根据导数的几何意义求出t的值,问题得以解决.

解答 解:抛物线C:x2=8y的焦点坐标为(0,2),
∵抛物线C的两条切线,切点分别为A,B,直线AB恰好过抛物线C的焦点,
∴x2=8×2,
解得x=±4,
∴xB=-4,xA=4,
∴A(4,2),B(-4,2),
∵y=$\frac{1}{8}$x2
∴y′=$\frac{1}{4}$x,
∴kAM=$\frac{1}{4}$×4=1=$\frac{2-t}{4-0}$,
解得t=-2,
∴|AB|=4+4=8,△MAB的高等于2-(-2)=4,
∴S△MAB=$\frac{1}{2}$×8×4=16,
(求出直线的斜率也可以这样求:设直线AM的方程为y-2=k(x-4),
由$\left\{\begin{array}{l}{{x}^{2}=8y}\\{y-2=k(x-4)}\end{array}\right.$得到x2-8kx+8(4k+2)=0,
∴△=64k2-32(4k-2)=0,
解得k=1,
继而求出y-2=x-4,
得到t=-2,然后再求出面积)
故选:D.

点评 本题考查三角形面积的计算,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若$\frac{2+ai}{1+i}$=b+i,则复数a+bi在复平面内表示的点所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知tanα=2且α为锐角,则cos2α=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,DE=3.
(Ⅰ)求证:AB∥平面CDE;
(Ⅱ)求证:平面ACE⊥平面CDE;
(Ⅲ)求三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C:y2=4x.直线l:y=k(x-8)与抛物线C交于A,B(A在B的下方)两点,与x
轴交于点P.
(1)若点P恰为弦AB的三等分点,试求实数k的值.
(2)过点P与直线l垂直的直线m与抛物线C交于点M,N,试求四边形AMBN的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在R上的奇函数,且在区间[0,+∞)上是增函数,若$\frac{{|f(lnx)-f(ln\frac{1}{x})|}}{2}<f(1)$,则f(x)的取值范围是(  )
A.(0,$\frac{1}{e}$)B.(0,e)C.($\frac{1}{e}$,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果点M(x,y)在直线3x-4y+4=0上,则f(x)=$\sqrt{(x+3)^{2}+(y-5)^{2}}$+$\sqrt{(x-2)^{2}+(y-15)^{2}}$取得最小值时,点M的坐标为(-8,-5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=|2x-3|,则不等式f(x)<5的解集为(-1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.($\frac{i-1}{i+1}$)2016的共轭复数为(  )
A.-1B.1C.1-iD.-1+i

查看答案和解析>>

同步练习册答案