精英家教网 > 高中数学 > 题目详情
13.如图,在四棱锥E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,DE=3.
(Ⅰ)求证:AB∥平面CDE;
(Ⅱ)求证:平面ACE⊥平面CDE;
(Ⅲ)求三棱锥E-ACD的体积.

分析 (Ⅰ)由线面垂直的性质得AB∥CD,再由线面平行的判定得AB∥平面CDE;
(Ⅱ)由CD⊥平面ADE,得CD⊥AE.再由线面垂直的判定得AE⊥平面CDE,进一步由面面垂直的判定得平面ACE⊥平面CDE;
(Ⅲ)把三棱锥E-ACD的体积转化为C-AED的体积求解得答案.

解答 证明:(Ⅰ)∵CD⊥平面ADE,AB⊥平面ADE,
∴AB∥CD,
∵AB?平面CDE,CD?平面CDE,
∴AB∥平面CDE;
(Ⅱ)∵CD⊥平面ADE,AE?平面ADE,
∴CD⊥AE.
又∵AE⊥DE,CD∩DE=D,CD,DE?平面CDE,
∴AE⊥平面CDE.
又∵AE?平面ACE,
∴平面ACE⊥平面CDE;
解:(Ⅲ)∵CD⊥平面ADE,
∴CD是三棱锥C-AED的高,
在Rt△AED中,$AE=\sqrt{A{D^2}-E{D^2}}=\sqrt{{6^2}-{3^2}}=3\sqrt{3}$,
∴${S_{△AED}}=\frac{1}{2}×3×3\sqrt{3}=\frac{{9\sqrt{3}}}{2}$,
∴四棱锥E-ACD的体积${V_{E-ACD}}={V_{C-AED}}=\frac{1}{3}{S_{△AED}}•CD=\frac{1}{3}×\frac{{9\sqrt{3}}}{2}×6=9\sqrt{3}$.

点评 本题考查线面平行、面面垂直的判定,考查棱锥体积的求法,训练了等积法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设条件{p:log2(x-1)<0;结论q:($\frac{1}{2}$)x-3>1,则p是q的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC的内角A,B,C的对边分别为a,b,c,且a=bcosC-$\frac{\sqrt{3}}{3}$csinB.
(Ⅰ)求B;
(Ⅱ)若点D为边AC的中点,AB=2,BC=1,求BD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图:在三棱柱ABC-A1B1C1中,底面是边长为2$\sqrt{3}$的正三角形,点A1在底面ABC上的射影O恰是BC中点.
(Ⅰ)求证:AA1⊥BC;
(Ⅱ)当侧棱AA1和底面成45°角时,求V${\;}_{A-B{B}_{1}{C}_{1}C}$;
(Ⅲ)若D为棱AA1上一点,当$\frac{{A}_{1}D}{DA}$为何值时,BD⊥A1C1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正三棱柱ABC-A1B1C1(侧棱垂直底面,底面为正三角形的棱柱)的底面边长为2,侧棱长为$\sqrt{3}$,则正三棱柱ABC-A1B1C1的体积为(  )
A.1B.$\frac{{\sqrt{3}}}{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四面体ABCD中,O、E分别 BD、BC的中点,AB=AD=$\sqrt{2}$,CA=CB=CD=BD=2.
(1)求证:AO⊥平面BCD;
(2)求异面直线AB与CD所成角的余弦值大小;
(3)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线C:x2=8y,过点M(0,t)(t<0)可作抛物线C的两条切线,切点分别为A,B,若直线AB恰好过抛物线C的焦点,则△MAB的面积为(  )
A.2B.3C.6D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的一个焦点为F($\sqrt{5}$,0),离心率e=$\frac{\sqrt{5}}{3}$.
(1)求椭圆C的标准方程;
(2)直线l过点F交椭圆C于A、B两点,且$\overrightarrow{AF}=2\overrightarrow{FB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.执行如图所示的程序框图,若输出的T=20,则循环体的判断框内应填入的条件是(填相应编号)②.
(①T≥S;②T>S;③T≤S;④T<S)

查看答案和解析>>

同步练习册答案