分析 (Ⅰ)由线面垂直的性质得AB∥CD,再由线面平行的判定得AB∥平面CDE;
(Ⅱ)由CD⊥平面ADE,得CD⊥AE.再由线面垂直的判定得AE⊥平面CDE,进一步由面面垂直的判定得平面ACE⊥平面CDE;
(Ⅲ)把三棱锥E-ACD的体积转化为C-AED的体积求解得答案.
解答 证明:(Ⅰ)∵CD⊥平面ADE,AB⊥平面ADE,
∴AB∥CD,
∵AB?平面CDE,CD?平面CDE,
∴AB∥平面CDE;
(Ⅱ)∵CD⊥平面ADE,AE?平面ADE,
∴CD⊥AE.
又∵AE⊥DE,CD∩DE=D,CD,DE?平面CDE,
∴AE⊥平面CDE.
又∵AE?平面ACE,
∴平面ACE⊥平面CDE;
解:(Ⅲ)∵CD⊥平面ADE,
∴CD是三棱锥C-AED的高,
在Rt△AED中,$AE=\sqrt{A{D^2}-E{D^2}}=\sqrt{{6^2}-{3^2}}=3\sqrt{3}$,
∴${S_{△AED}}=\frac{1}{2}×3×3\sqrt{3}=\frac{{9\sqrt{3}}}{2}$,
∴四棱锥E-ACD的体积${V_{E-ACD}}={V_{C-AED}}=\frac{1}{3}{S_{△AED}}•CD=\frac{1}{3}×\frac{{9\sqrt{3}}}{2}×6=9\sqrt{3}$.
点评 本题考查线面平行、面面垂直的判定,考查棱锥体积的求法,训练了等积法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 非充分非必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 6 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com