精英家教网 > 高中数学 > 题目详情
1.如图:在三棱柱ABC-A1B1C1中,底面是边长为2$\sqrt{3}$的正三角形,点A1在底面ABC上的射影O恰是BC中点.
(Ⅰ)求证:AA1⊥BC;
(Ⅱ)当侧棱AA1和底面成45°角时,求V${\;}_{A-B{B}_{1}{C}_{1}C}$;
(Ⅲ)若D为棱AA1上一点,当$\frac{{A}_{1}D}{DA}$为何值时,BD⊥A1C1

分析 (I)由A1O⊥平面ABC得A1O⊥BC,由三线合一得出AO⊥BC,故而BC⊥平面A1OA,于是AA1⊥BC;
(II)根据∠A1AO=45°得出棱柱的高A1O,则V${\;}_{A-BC{C}_{1}{B}_{1}}$=V${\;}_{棱柱ABC-{A}_{1}{B}_{1}{C}_{1}}$-V${\;}_{A-{A}_{1}{B}_{1}{C}_{1}}$=$\frac{2}{3}$V${\;}_{棱柱ABC-{A}_{1}{B}_{1}{C}_{1}}$.
(III)过D作DE⊥AC于E,过A1作A1F⊥AC于F,连结BE,OF.通过证明AC⊥平面A1OF确定F点为AC的四等分点,通过证明AC⊥平面BDE确定E为AC的中点,于是$\frac{{A}_{1}D}{DA}=\frac{EF}{AE}$.

解答 证明:(I)连结AO,
∵A1O⊥平面ABC,BC?平面ABC,
∴A1O⊥BC,
∵△ABC是正三角形,O是BC的中点,
∴AO⊥BC,
又AO?平面A1AO,A1O?平面A1AO,AO∩A1O=O,
∴BC⊥平面A1AO,∵AA1?平面A1AO,
∴BC⊥A1A.
(II)∵A1O⊥平面ABC,
∴∠A1AO为侧棱A1A与底面ABC所成的角,
∴∠A1AO=45°,
∵等边三角形ABC的边长为2$\sqrt{3}$,
∴AO=3,∴A1O=3.
∴V${\;}_{棱柱ABC-{A}_{1}{B}_{1}{C}_{1}}$=S△ABC•A1O=$\frac{\sqrt{3}}{4}×(2\sqrt{3})^{2}×3$=9$\sqrt{3}$.
V${\;}_{A-{A}_{1}{B}_{1}{C}_{1}}$=$\frac{1}{3}$V${\;}_{棱柱ABC-{A}_{1}{B}_{1}{C}_{1}}$=3$\sqrt{3}$.
∴V${\;}_{A-BC{C}_{1}{B}_{1}}$=V${\;}_{棱柱ABC-{A}_{1}{B}_{1}{C}_{1}}$-V${\;}_{A-{A}_{1}{B}_{1}{C}_{1}}$=6$\sqrt{3}$.
(III)$\frac{{A}_{1}D}{DA}=2$时,BD⊥A1C1,理由如下:
过D作DE⊥AC于E,过A1作A1F⊥AC于F,连结BE,OF.
∵A1O⊥平面ABC,AC?平面ABC,
∴A1O⊥AC,又A1F⊥AC,AF?平面A1OF,A1O?平面A1OF,A1O∩A1F=A1
∴AC⊥平面A1OF,∵OF?平面A1OF,
∴AC⊥OF,
∵△ABC是等边三角形,O是BC的中点,
∴F为线段AC的靠近C点的四等分点,即AF=$\frac{3}{4}AC$=$\frac{3\sqrt{3}}{2}$.
∵BD⊥A1C1,AC∥A1C1,∴AC⊥BD.
又AC⊥DE,DE?平面BDE,BD?平面BDE,BD∩DE=D,
∴AC⊥平面BDE,∵BD?平面BDE,
∴AC⊥BE,
∵△ABC是等边三角形,∴E为AC的中点.即AE=$\frac{1}{2}AC$=$\sqrt{3}$.
∵DE⊥AC,A1F⊥AC,DE?平面AA1C1C,A1F?平面AA1C1C,
∴DE∥A1F,
∴$\frac{{A}_{1}D}{DA}=\frac{EF}{AE}$=$\frac{1}{2}$.

点评 本题考查了线面垂直的判定与性质,棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某高三文科班有A,B两个学习小组,每组8人,在刚刚进行的双基考试中这两组学生历史考试的成绩如图茎叶图所示:
(1)这两组学生历史成绩的中位数和平均数分别是多少?
(2)历史老师想要在这两个学习小组中选择一个小组进行奖励,请问选择哪个小组比较好,只说明结论,不用说明理由;
(3)若成绩在90分以上(包括90分)的同学视为优秀,则从这两组历史成绩优秀的学生中抽取2人,求至少有一人来自B学习小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.2015年12月10日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法.目前,国内青蒿人工种植发展迅速.调查表明,人工种植的青蒿素长势与海拔高度、土壤酸碱度、空气湿度的指标有很强的相关性.现将这三项指标分别记为x,y,z,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x+y+z的值评定人工种植的青蒿素的长势等级;若能ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级.为了了解目前人工种植的青蒿素的长势情况.研究人员随即抽取了10块青蒿人工种植地,得到如表结果;
种植地编号A1A2A3A4A5
(x,y,z)(0,1,0)(1,2,1)(2,1,1)(2,2,2)(0,1,1)
种植地编号A6A7A8A9A10
(x,y,z)(1,1,2)(2,1,2)(2,0,1)(2,2,1)(0,2,1)
(1)若该地有青蒿人工种植地180个,试估计该地中长势等级为三级的个数;
(2)从长势等级为一级的青蒿人工种植地中随机抽取两个,求这两个人工种植地的综合指标ω均为4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,G为△F1PF2内一点,满足3$\overrightarrow{PG}$=$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$,△F1PF2的内心为I,且有$\overrightarrow{IG}$=λ$\overrightarrow{{F}_{1}{F}_{2}}$(其中λ为实数),则椭圆C的离心率e=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知tanα=2且α为锐角,则cos2α=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥P-ABCD的底面是矩形,侧面PAD是边长为2的正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.
(1)求证:PB∥平面EAC;
(2)求证:AE⊥平面PCD;
(3)若直线AC与平面PCD所成的角为30°,求三棱锥D-AEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,DE=3.
(Ⅰ)求证:AB∥平面CDE;
(Ⅱ)求证:平面ACE⊥平面CDE;
(Ⅲ)求三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在R上的奇函数,且在区间[0,+∞)上是增函数,若$\frac{{|f(lnx)-f(ln\frac{1}{x})|}}{2}<f(1)$,则f(x)的取值范围是(  )
A.(0,$\frac{1}{e}$)B.(0,e)C.($\frac{1}{e}$,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若椭圆C与直线y=x+m交于M,N两点,且|MN|=$\frac{{12\sqrt{2}}}{7}$,求m的值;
(Ⅲ)若点A(x1,y1)与点P(x2,y2)在椭圆C上,且点A在第一象限,点P在第二象限,点B与点A关于原点对称,求证:当x12+x22=4时,三角形△PAB的面积为定值.

查看答案和解析>>

同步练习册答案