精英家教网 > 高中数学 > 题目详情
12.已知椭圆Г:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2c,左焦点为F,若直线y=x+c与椭圆交于A,B 两点,且|AF|=3|FB|,则椭圆的离心率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

分析 联立椭圆方程和直线方程,求得A,B两点的纵坐标,把|AF|=3|FB|化为纵坐标的关系得答案.

解答 解:如图,
联立$\left\{\begin{array}{l}{y=x+c}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$,得(a2+b2)y2-2b2cy-b4=0.
解得:$y=\frac{2{b}^{2}c±\sqrt{(-2{b}^{2}c)^{2}-4({a}^{2}+{b}^{2})×(-{b}^{4})}}{2({a}^{2}+{b}^{2})}$=$\frac{2{b}^{2}c±\sqrt{8{a}^{2}{b}^{4}}}{2({a}^{2}+{b}^{2})}$,
即${y}_{B}=\frac{{b}^{2}c-\sqrt{2}a{b}^{2}}{{a}^{2}+{b}^{2}}$,${y}_{A}=\frac{{b}^{2}c+\sqrt{2}a{b}^{2}}{{a}^{2}+{b}^{2}}$.
∵|AF|=3|FB|,∴yA=-3yB
则$\frac{{b}^{2}c+\sqrt{2}a{b}^{2}}{{a}^{2}+{b}^{2}}=-3\frac{{b}^{2}c-\sqrt{2}a{b}^{2}}{{a}^{2}+{b}^{2}}$,
∴${b}^{2}c+\sqrt{2}a{b}^{2}=-3{b}^{2}c+3\sqrt{2}a{b}^{2}$,
即$4{b}^{2}c=2\sqrt{2}a{b}^{2}$,
∴$a=\sqrt{2}c$,
∴$\frac{c}{a}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$.
故选:C.

点评 本题考查了椭圆的简单几何性质,考查了直线与圆锥曲线的关系,运用了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某高中为了选拔学生参加“全国中学生英语能力竞赛(NEPCS)”,先在本校进行初赛(满分150分),若该校有100名学生参加初赛,并根据初赛成绩得到如图所示的频率分布直方图.
(1)根据频率分布直方图,计算这100名学生参加初赛成绩的中位数;
(2)该校推荐初赛成绩在110分以上的学生代表学校参加竞赛,为了了解情况,在该校推荐参加竞赛的学生中随机抽取3人,求选取的三人的初赛成绩在频率分布直方图中处于同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,正三棱柱ABC-A1B1C1中,A1A=3,AB=2,D是BC上的中点,D1是B1C1的中点,
(1)求证:平面A1BD1∥平面AC1D.
(2)求四棱锥A1-B1BCC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知抛物线C:y2=4x.直线l:y=k(x-8)与抛物线C交于A,B(A在B的下方)两点,与x
轴交于点P.
(1)若点P恰为弦AB的三等分点,试求实数k的值.
(2)过点P与直线l垂直的直线m与抛物线C交于点M,N,试求四边形AMBN的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,E为AD上一点,F为PC上一点,四边形BCDE为矩形,∠PAD=60°,PB=2$\sqrt{3}$,PA=ED=2AE=2.
(1)求证:PE⊥平面ABCD;
(2)若二面角F-BE-C为30°,设$\overrightarrow{PF}$=λ$\overrightarrow{FC}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果点M(x,y)在直线3x-4y+4=0上,则f(x)=$\sqrt{(x+3)^{2}+(y-5)^{2}}$+$\sqrt{(x-2)^{2}+(y-15)^{2}}$取得最小值时,点M的坐标为(-8,-5).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.动点P为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上异于椭圆顶点A(a,0),B(-a,0)的一点,F1,F2为椭圆的两个焦点,动圆M与线段F1P、F1F2的延长线及线段PF2相切,则圆心M的轨迹为除去坐标轴上的点的(  )
A.抛物线B.椭圆C.双曲线的右支D.一条直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,短轴长为2.
(1)求椭圆E的方程;
(2)过圆C:x2+y2=r2(0<r<b)上的任意一点作圆C的切线l与椭圆E交于A,B两点,都有OA⊥OB(O为坐标原点),求r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知8a3+9a+c=0,b3-$\frac{1}{{3}^{b}}$-c=0,其中a,b,c均为非零实数,则$\frac{a}{b}$的值为-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案