| A. | 抛物线 | B. | 椭圆 | C. | 双曲线的右支 | D. | 一条直线 |
分析 画出圆M,切点分别为E、D、G,由切线长相等定理知F1G=F1E,PD=PE,F2D=F2G,根据椭圆的定义知PF1+PF2=2a,PF1+PF2=F1E+DF2(PD=PE)=F1G+F2D(F1G=F1E)=F1G+F2G=2a,由此入手知M点的轨迹是垂直于x轴的一条直线(除去A点).
解答 解:如图画出圆M,切点分别为E、D、G,
由切线长相等定理知F1G=F1E,PD=PE,F2D=F2G,
根据椭圆的定义知PF1+PF2=2a,
即有PF1+PF2=F1E+DF2(由于PD=PE)
=F1G+F2D(由于F1G=F1E)
=F1G+F2G=2a,
即为2F2G=2a-2c,F2G=a-c,
即点G与点A重合,
即有点M在x轴上的射影是长轴端点A,
M点的轨迹是垂直于x轴的一条直线(除去A点).
故选:D.![]()
点评 本题考查椭圆的定义,以及圆的切线长定理的运用,考查推理能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=2x-3 | B. | y=-2x+5 | C. | y=-x+3 | D. | y=x-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 课程 | 数学1 | 数学2 | 数学3 | 数学4 | 数学5 | 合计 |
| 频数 | 20 | 10 | 12 | a | b | 50 |
| 频率 | 0.4 | 0.2 | p | 0.12 | q | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com