精英家教网 > 高中数学 > 题目详情
19.已知抛物线C的顶点在坐标原点,准线方程为x=-1,直线l与抛物线C相交于A,B两点.若线段AB的中点为(2,1),则直线l的方程为(  )
A.y=2x-3B.y=-2x+5C.y=-x+3D.y=x-1

分析 设出A,B的坐标,代入抛物线方程,两式相减,整理求得直线l的斜率,进而利用点斜式求得直线的方程.

解答 解:∵抛物线C的顶点在坐标原点,准线方程为x=-1,
∴-$\frac{p}{2}$=-1,
∴p=2,
∴抛物线的方程为y2=4x.设A(x1,y1),B(x2,y2),
则$\left\{\begin{array}{l}{{y}_{1}^{2}=4{x}_{1}}\\{{y}_{2}^{2}=4{x}_{2}}\end{array}\right.$,两式相减得:
(y1+y2)(y1-y2)=4(x1-x2),
∴AB的斜率k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{4}{{y}_{1}+{y}_{2}}$=$\frac{4}{2}$=2,
从而直线AB的方程为y-1=2(x-2),即y=2x-3.
故选:A.

点评 本题主要考查了抛物线的简单性质.涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.某班m名学生在一次考试中数学成绩的频率分布直方图如图,若在这m名学生中,数学成绩不低于100分的人数为33,则m等于(  )
A.45B.48C.50D.55

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知正方体ABCD-A1B1C1D1的棱长为2,O是AC的中点,E是线段D1O上一点,且$\overrightarrow{{D_1}E}=λ\overrightarrow{EO}$.
(1)求证:D1O⊥AC;
(2)若DE⊥平面CD1O,求λ的值,并求三棱锥C-DEO的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,E为AD上一点,F为PC上一点,四边形BCDE为矩形,∠PAD=60°,PB=2$\sqrt{3}$,PA=ED=2AE=2.
(1)求证:PE⊥平面ABCD;
(2)若二面角F-BE-C为30°,设$\overrightarrow{PF}$=λ$\overrightarrow{FC}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,左、右焦点分别为F1,F2;若圆x2+y2=a2被直线x-y-$\sqrt{2}$=0截得的弦长为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过右焦点F2的直线l与椭圆C交于A、B两点,是否存在过右焦点F2的直线l,使得以AB为直径的圆过左焦点F1,如果存在,求直线l的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.动点P为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上异于椭圆顶点A(a,0),B(-a,0)的一点,F1,F2为椭圆的两个焦点,动圆M与线段F1P、F1F2的延长线及线段PF2相切,则圆心M的轨迹为除去坐标轴上的点的(  )
A.抛物线B.椭圆C.双曲线的右支D.一条直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)=ax2+bx+c,a,b,c∈R
(Ⅰ)当a=1时,f(x)<0的解集与不等式$\frac{1}{x-2}$>1的解集相同,求函数f(x)的解析式;
(Ⅱ)若|x|≤1,|f(x)|≤1恒成立,求a的取值范围;
(Ⅲ)在(Ⅱ)条件下若g(x)=λax+b(λ>1),求证:当|x|≤1时,|g(x)|≤2λ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.△ABC中,a,b,c分别是内角A,B,C的对边,且cos2B+3cos(A+C)+2=0,b=$\sqrt{3}$,则$\frac{sinC}{c}$等于(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{x^2}{a^2}$+y2=1(a>1),
(1)若A(0,1)到焦点的距离为$\sqrt{3}$,求椭圆的离心率.
(2)Rt△ABC以A(0,1)为直角顶点,边AB、AC与椭圆交于两点B、C.若△ABC面积的最大值为$\frac{27}{8}$,求a的值.

查看答案和解析>>

同步练习册答案