14£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£»ÈôÔ²x2+y2=a2±»Ö±Ïßx-y-$\sqrt{2}$=0½ØµÃµÄÏÒ³¤Îª2£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©Éè¹ýÓÒ½¹µãF2µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¬ÊÇ·ñ´æÔÚ¹ýÓÒ½¹µãF2µÄÖ±Ïßl£¬Ê¹µÃÒÔABΪֱ¾¶µÄÔ²¹ý×ó½¹µãF1£¬Èç¹û´æÔÚ£¬ÇóÖ±ÏßlµÄ·½³Ì£»Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÔËÓõ㵽ֱÏߵľàÀ빫ʽ£¬ÒÔ¼°ÏÒ³¤¹«Ê½£¬½áºÏÍÖÔ²µÄÀëÐÄÂʹ«Ê½£¬¼ÆËã¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©¼ÙÉè´æÔÚÂú×ãÌâÒâµÄÖ±Ïßl£®µ±Ö±ÏßlÓëyÖᴹֱʱ£¬²»ºÏÌâÒ⣻¿ÉÉèlµÄ·½³ÌΪx=my+1£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬ÓÉÒÔABΪֱ¾¶µÄÔ²¹ý×ó½¹µãF1£¬ÓÖF1£¨-1£¬0£©£¬F2£¨1£¬0£©¿ÉµÃ$\overrightarrow{{F}_{1}A}$•$\overrightarrow{{F}_{1}B}$=0£¬ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬»¯¼òÕûÀí£¬½â·½³Ì¿ÉµÃmµÄÖµ£¬¼´¿ÉÅжϴæÔÚÖ±Ïßl£¬ÇóµÃlµÄ·½³Ì£®

½â´ð ½â£º£¨¢ñ£©Ô²ÐÄOµ½Ö±Ïßx-y-$\sqrt{2}$=0µÄ¾àÀëΪd=$\frac{\sqrt{2}}{\sqrt{1+1}}$=1£¬
ÓÉÔ²x2+y2=a2±»Ö±Ïß$x-y-\sqrt{2}=0$½ØµÃµÄÏÒ³¤Îª2£¬
¿ÉµÃ2=2$\sqrt{{a}^{2}-1}$
½âµÃa=$\sqrt{2}$£¬
ÓÉÍÖÔ²CÀëÐÄÂÊΪ$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬µÃc=1£¬
Ôòb2=a2-c2=1£¬
ËùÒÔÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£»
£¨¢ò£©¼ÙÉè´æÔÚÂú×ãÌâÒâµÄÖ±Ïßl£®
µ±Ö±ÏßlÓëyÖᴹֱʱ£¬²»ºÏÌâÒ⣻¿ÉÉèlµÄ·½³ÌΪx=my+1£¬
ÓÉ$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ x=my+1\end{array}\right.$£¬ÏûxµÃ£¨m2+2£©y2+2my-1=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©
Ôò${y_1}+{y_2}=\frac{-2m}{{{m^2}+2}}£¬{y_1}{y_2}=\frac{-1}{{{m^2}+2}}$£¬
ÓÉÒÔABΪֱ¾¶µÄÔ²¹ý×ó½¹µãF1£¬ÓÖF1£¨-1£¬0£©£¬F2£¨1£¬0£©
¿ÉµÃ$\overrightarrow{{F}_{1}A}$•$\overrightarrow{{F}_{1}B}$=0£¬
¼´£¨x1+1£¬y1£©•£¨x2+1£¬y2£©=0£¬
µÃx1x2+£¨x1+x2£©+y1y2+1=0£¬
¶ø${x_1}{x_2}=£¨m{y_1}+1£©£¨m{y_2}+1£©=\frac{{2-2{m^2}}}{{{m^2}+2}}$£¬
${x_1}+{x_2}=m{y_1}+1+m{y_2}+1=\frac{4}{{{m^2}+2}}$£®
¿ÉµÃ$\frac{{2-2{m^2}}}{{{m^2}+2}}+\frac{4}{{{m^2}+2}}+\frac{-1}{{{m^2}+2}}+1=0$£¬
½âµÃ$m=¡À\sqrt{7}$
¹Ê´æÔÚÖ±Ïßl£¬lµÄ·½³ÌΪ£º$x+\sqrt{7}y-1=0$»ò$x-\sqrt{7}y-1=0$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÖ±ÏߺÍÔ²ÏཻµÄÏÒ³¤¹«Ê½ºÍÍÖÔ²µÄÀëÐÄÂʹ«Ê½£¬¿¼²é´æÔÚÐÔÎÊÌâµÄ½â·¨£¬×¢ÒâÔËÓÃÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖ±¾¶Ëù¶ÔµÄÔ²ÖܽÇΪֱ½Ç£¬ÔËÓÃÏòÁ¿´¹Ö±µÄÌõ¼þ£ºÊýÁ¿»ýΪ0£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÓÉÇúÏßy=$\frac{1}{x}$£¬Ö±Ïßx=1ºÍx=2¼°xÖáΧ³ÉµÄ·â±ÕͼÐεÄÃæ»ýµÈÓÚln2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èçͼ£¬Õý·½ÌåABCD-A1B1C1D1µÄÀⳤΪa£¬ÄÇôËÄÀâ×¶D1-ABCDµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{2}{a^3}$B£®$\frac{1}{3}{a^3}$C£®$\frac{1}{4}{a^3}$D£®$\frac{1}{6}{a^3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªÅ×ÎïÏßC£ºy2=4xµÄ½¹µãΪF£¬×¼ÏßΪl£¬PÊÇlÉÏÒ»µã£¬Ö±ÏßPFÓëÅ×ÎïÏßCÏཻÓÚA£¬BÁ½µã£¬Èô$\overrightarrow{FP}$=3$\overrightarrow{FA}$£¬Ôò|AB|=£¨¡¡¡¡£©
A£®5B£®$\frac{16}{3}$C£®$\frac{22}{3}$D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÈýµãP£¨5£¬2£©¡¢F1£¨-6£¬0£©¡¢F2£¨6£¬0£©ÄÇôÒÔF1¡¢F2Ϊ½¹µãÇÒ¹ýµãPµÄÍÖÔ²µÄ¶ÌÖ᳤Ϊ£¨¡¡¡¡£©
A£®3B£®6C£®9D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªÅ×ÎïÏßCµÄ¶¥µãÔÚ×ø±êÔ­µã£¬×¼Ïß·½³ÌΪx=-1£¬Ö±ÏßlÓëÅ×ÎïÏßCÏཻÓÚA£¬BÁ½µã£®ÈôÏß¶ÎABµÄÖеãΪ£¨2£¬1£©£¬ÔòÖ±ÏßlµÄ·½³ÌΪ£¨¡¡¡¡£©
A£®y=2x-3B£®y=-2x+5C£®y=-x+3D£®y=x-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ¶ÌÖ᳤Ϊ2£¬ÀëÐÄÂÊe=$\frac{\sqrt{2}}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl£ºy=kx+mÓëÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬ÓëÔ²x2+y2=$\frac{2}{3}$ÏàÇÐÓÚµãM£®
£¨i£©Ö¤Ã÷£ºOA¡ÍOB£¨OÎª×ø±êÔ­µã£©£»
£¨ii£©Éè¦Ë=$\frac{{|{AM}|}}{{|{BM}|}}$£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªµãA£¬BµÄ×ø±ê·Ö±ðΪ£¨-2£¬0£©£¬£¨2£¬0£©£®Ö±ÏßAP£¬BPÏཻÓÚµãP£¬ÇÒËüÃǵÄбÂÊÖ®»ýÊÇ-$\frac{1}{4}$£®¼ÇµãPµÄ¹ì¼£Îª§¤£®
£¨¢ñ£©Ç󧤵ķ½³Ì£»
£¨¢ò£©ÒÑÖªÖ±ÏßAP£¬BP·Ö±ð½»Ö±Ïßl£ºx=4ÓÚµãM£¬N£¬¹ì¼£§¤ÔÚµãP´¦µÄÇÐÏßÓëÏß¶ÎMN½»ÓÚµãQ£¬Çó$\frac{|MQ|}{|NQ|}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÔòÊä³öµÄ½á¹ûΪ£¨¡¡¡¡£©
A£®3B£®13C£®8D£®10

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸