·ÖÎö £¨¢ñ£©ÔËÓõ㵽ֱÏߵľàÀ빫ʽ£¬ÒÔ¼°ÏÒ³¤¹«Ê½£¬½áºÏÍÖÔ²µÄÀëÐÄÂʹ«Ê½£¬¼ÆËã¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©¼ÙÉè´æÔÚÂú×ãÌâÒâµÄÖ±Ïßl£®µ±Ö±ÏßlÓëyÖᴹֱʱ£¬²»ºÏÌâÒ⣻¿ÉÉèlµÄ·½³ÌΪx=my+1£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬ÓÉÒÔABΪֱ¾¶µÄÔ²¹ý×ó½¹µãF1£¬ÓÖF1£¨-1£¬0£©£¬F2£¨1£¬0£©¿ÉµÃ$\overrightarrow{{F}_{1}A}$•$\overrightarrow{{F}_{1}B}$=0£¬ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ£¬»¯¼òÕûÀí£¬½â·½³Ì¿ÉµÃmµÄÖµ£¬¼´¿ÉÅжϴæÔÚÖ±Ïßl£¬ÇóµÃlµÄ·½³Ì£®
½â´ð ½â£º£¨¢ñ£©Ô²ÐÄOµ½Ö±Ïßx-y-$\sqrt{2}$=0µÄ¾àÀëΪd=$\frac{\sqrt{2}}{\sqrt{1+1}}$=1£¬
ÓÉÔ²x2+y2=a2±»Ö±Ïß$x-y-\sqrt{2}=0$½ØµÃµÄÏÒ³¤Îª2£¬
¿ÉµÃ2=2$\sqrt{{a}^{2}-1}$
½âµÃa=$\sqrt{2}$£¬
ÓÉÍÖÔ²CÀëÐÄÂÊΪ$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬µÃc=1£¬
Ôòb2=a2-c2=1£¬
ËùÒÔÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£»
£¨¢ò£©¼ÙÉè´æÔÚÂú×ãÌâÒâµÄÖ±Ïßl£®
µ±Ö±ÏßlÓëyÖᴹֱʱ£¬²»ºÏÌâÒ⣻¿ÉÉèlµÄ·½³ÌΪx=my+1£¬
ÓÉ$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ x=my+1\end{array}\right.$£¬ÏûxµÃ£¨m2+2£©y2+2my-1=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©
Ôò${y_1}+{y_2}=\frac{-2m}{{{m^2}+2}}£¬{y_1}{y_2}=\frac{-1}{{{m^2}+2}}$£¬
ÓÉÒÔABΪֱ¾¶µÄÔ²¹ý×ó½¹µãF1£¬ÓÖF1£¨-1£¬0£©£¬F2£¨1£¬0£©
¿ÉµÃ$\overrightarrow{{F}_{1}A}$•$\overrightarrow{{F}_{1}B}$=0£¬
¼´£¨x1+1£¬y1£©•£¨x2+1£¬y2£©=0£¬
µÃx1x2+£¨x1+x2£©+y1y2+1=0£¬
¶ø${x_1}{x_2}=£¨m{y_1}+1£©£¨m{y_2}+1£©=\frac{{2-2{m^2}}}{{{m^2}+2}}$£¬
${x_1}+{x_2}=m{y_1}+1+m{y_2}+1=\frac{4}{{{m^2}+2}}$£®
¿ÉµÃ$\frac{{2-2{m^2}}}{{{m^2}+2}}+\frac{4}{{{m^2}+2}}+\frac{-1}{{{m^2}+2}}+1=0$£¬
½âµÃ$m=¡À\sqrt{7}$
¹Ê´æÔÚÖ±Ïßl£¬lµÄ·½³ÌΪ£º$x+\sqrt{7}y-1=0$»ò$x-\sqrt{7}y-1=0$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÖ±ÏߺÍÔ²ÏཻµÄÏÒ³¤¹«Ê½ºÍÍÖÔ²µÄÀëÐÄÂʹ«Ê½£¬¿¼²é´æÔÚÐÔÎÊÌâµÄ½â·¨£¬×¢ÒâÔËÓÃÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖ±¾¶Ëù¶ÔµÄÔ²ÖܽÇΪֱ½Ç£¬ÔËÓÃÏòÁ¿´¹Ö±µÄÌõ¼þ£ºÊýÁ¿»ýΪ0£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{2}{a^3}$ | B£® | $\frac{1}{3}{a^3}$ | C£® | $\frac{1}{4}{a^3}$ | D£® | $\frac{1}{6}{a^3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 5 | B£® | $\frac{16}{3}$ | C£® | $\frac{22}{3}$ | D£® | 8 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3 | B£® | 6 | C£® | 9 | D£® | 12 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | y=2x-3 | B£® | y=-2x+5 | C£® | y=-x+3 | D£® | y=x-1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3 | B£® | 13 | C£® | 8 | D£® | 10 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com