精英家教网 > 高中数学 > 题目详情
6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2,离心率e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m与椭圆交于不同的两点A,B,与圆x2+y2=$\frac{2}{3}$相切于点M.
(i)证明:OA⊥OB(O为坐标原点);
(ii)设λ=$\frac{{|{AM}|}}{{|{BM}|}}$,求实数λ的取值范围.

分析 (Ⅰ)由已知得到b=1,结合e=$\frac{\sqrt{2}}{2}$,即a2=b2+c2求得a2=2,则椭圆方程可求;
(Ⅱ)(i)由直线l:y=kx+m与圆x2+y2=$\frac{2}{3}$相切,可得$d=\frac{|m|}{\sqrt{1+{k}^{2}}}=\sqrt{\frac{2}{3}}$,即${m}^{2}=\frac{2}{3}(1+{k}^{2})$.联立直线方程好椭圆方程,得到A,B横坐标的和与积,代入可得$\overrightarrow{OA}•\overrightarrow{OB}=0$,得到OA⊥OB;
(ii)直线l:y=kx+m与椭圆交于不同的两点A,B,把A,B的坐标代入椭圆方程,可得$\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}=1$,$\frac{{{x}_{2}}^{2}}{2}+{{y}_{2}}^{2}=1$.在圆中由垂径定理可得$λ=\frac{|AM|}{|BM|}=\frac{\sqrt{O{A}^{2}-{r}^{2}}}{\sqrt{O{B}^{2}-{r}^{2}}}$=$\frac{\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}-\frac{2}{3}}}{\sqrt{{{x}_{2}}^{2}+{{y}_{2}}^{2}-\frac{2}{3}}}$=$\frac{\sqrt{\frac{{{x}_{1}}^{2}}{2}+\frac{1}{3}}}{\sqrt{\frac{{{x}_{2}}^{2}}{2}+\frac{1}{3}}}$.结合x1x2+y1y2=0,得到$λ=\frac{\sqrt{\frac{{{x}_{1}}^{2}}{2}+\frac{1}{3}}}{\sqrt{\frac{{{x}_{2}}^{2}}{2}+\frac{1}{3}}}=\frac{2+3{{x}_{1}}^{2}}{4}$.由x1 的范围求得λ的取值范围.

解答 解:(Ⅰ)∵2b=2,∴b=1.…(1分)
又e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,a2=b2+c2
∴a2=2.…(3分)
∴椭圆C的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;…(4分)
(Ⅱ)(i)∵直线l:y=kx+m与圆x2+y2=$\frac{2}{3}$相切,
∴$d=\frac{|m|}{\sqrt{1+{k}^{2}}}=\sqrt{\frac{2}{3}}$,即${m}^{2}=\frac{2}{3}(1+{k}^{2})$.…(5分)
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,消去y并整理得,(1+2k2)x2+4kmx+2m2-2=0.
设A(x1,y1),B(x2,y2),
则${x}_{1}+{x}_{2}=-\frac{4km}{1+2{k}^{2}},{x}_{1}{x}_{2}=\frac{2{m}^{2}-2}{1+2{k}^{2}}$.…(7分)
∵$\overrightarrow{OA}•\overrightarrow{OB}={x}_{1}{x}_{2}+{y}_{1}{y}_{2}={x}_{1}{x}_{2}+(k{x}_{1}+m)(k{x}_{2}+m)$.
=$(1+{k}^{2}){x}_{1}{x}_{2}+km({x}_{1}+{x}_{2})+{m}^{2}$
=$(1+{k}^{2})•\frac{2{m}^{2}-2}{1+2{k}^{2}}+km(-\frac{4km}{1+2{k}^{2}})+{m}^{2}$
=$\frac{3{m}^{2}-2{k}^{2}-2}{1+2{k}^{2}}=\frac{2(1+{k}^{2})-2{k}^{2}-2}{1+2{k}^{2}}=0$,
∴OA⊥OB.…(9分)
(ii)∵直线l:y=kx+m与椭圆交于不同的两点A,B,
∴$\frac{{{x}_{1}}^{2}}{2}+{{y}_{1}}^{2}=1$,$\frac{{{x}_{2}}^{2}}{2}+{{y}_{2}}^{2}=1$.
∴$λ=\frac{|AM|}{|BM|}=\frac{\sqrt{O{A}^{2}-{r}^{2}}}{\sqrt{O{B}^{2}-{r}^{2}}}$=$\frac{\sqrt{{{x}_{1}}^{2}+{{y}_{1}}^{2}-\frac{2}{3}}}{\sqrt{{{x}_{2}}^{2}+{{y}_{2}}^{2}-\frac{2}{3}}}$=$\frac{\sqrt{\frac{{{x}_{1}}^{2}}{2}+\frac{1}{3}}}{\sqrt{\frac{{{x}_{2}}^{2}}{2}+\frac{1}{3}}}$.…(11分)
由(Ⅱ)(i)知x1x2+y1y2=0,
∴x1x2=-y1y2,${{x}_{1}}^{2}{{x}_{2}}^{2}={{y}_{1}}^{2}{{y}_{2}}^{2}=(1-\frac{{{x}_{1}}^{2}}{2})(1-\frac{{{x}_{2}}^{2}}{2})$,即${{x}_{2}}^{2}=\frac{4-2{{x}_{1}}^{2}}{2+3{{x}_{1}}^{2}}$.
∴$λ=\frac{\sqrt{\frac{{{x}_{1}}^{2}}{2}+\frac{1}{3}}}{\sqrt{\frac{{{x}_{2}}^{2}}{2}+\frac{1}{3}}}=\frac{2+3{{x}_{1}}^{2}}{4}$.…(13分)
∵$-\sqrt{2}≤{x}_{1}≤\sqrt{2}$,
∴λ的取值范围是$\frac{1}{2}≤λ≤2$.…(14分)

点评 本题考查椭圆的简单性质,考查了直线与圆、圆与椭圆位置关系的应用,训练了利用向量数量积判断两条线段的垂直关系,考查运算能力,属难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\overrightarrow{a}$•$\overrightarrow{b}$=3,若($\overrightarrow{c}$-2$\overrightarrow{a}$)•($\overrightarrow{c}$-$\frac{2}{3}$$\overrightarrow{b}$)=0,则|$\overrightarrow{b}$-$\overrightarrow{c}$|的最小值是(  )
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx+$\frac{a}{x}$(a∈R).
(1)求函数的单调区间;
(2)若方程f(x)=2存在两个不同的实数解x1、x2,求证:x1+x2>2a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,左、右焦点分别为F1,F2;若圆x2+y2=a2被直线x-y-$\sqrt{2}$=0截得的弦长为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过右焦点F2的直线l与椭圆C交于A、B两点,是否存在过右焦点F2的直线l,使得以AB为直径的圆过左焦点F1,如果存在,求直线l的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率e=$\frac{\sqrt{3}}{2}$,经过椭圆E的下顶点A和右焦点F的直线l的圆C:x2+(y-2b)2=$\frac{27}{4}$相切.
(1)求椭圆E的方程;
(2)若直线m与l垂直,且交椭圆E与P、Q两点,当$\overrightarrow{OP}•\overrightarrow{OQ}=-\frac{1}{13}$(O是坐标原点)时,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)=ax2+bx+c,a,b,c∈R
(Ⅰ)当a=1时,f(x)<0的解集与不等式$\frac{1}{x-2}$>1的解集相同,求函数f(x)的解析式;
(Ⅱ)若|x|≤1,|f(x)|≤1恒成立,求a的取值范围;
(Ⅲ)在(Ⅱ)条件下若g(x)=λax+b(λ>1),求证:当|x|≤1时,|g(x)|≤2λ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=|x+a|-|x-a|.
(Ⅰ)当a=2时,解不等式f(x)≥2;
(Ⅱ)若y>0,证明:f(x)≤a2y+$\frac{1}{y}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知两定点A(-2,0)和B(2,0),动点P(x,y)在直线l:y=x+3移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为$\frac{2\sqrt{26}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx-x+$\frac{a}{x}$+1(a∈R).
(1)若曲线y=f(x)在x=1处的切线与y轴垂直,求函数f(x)的极值;
(2)判断函数f(x)的单调性.

查看答案和解析>>

同步练习册答案