精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=lnx-x+$\frac{a}{x}$+1(a∈R).
(1)若曲线y=f(x)在x=1处的切线与y轴垂直,求函数f(x)的极值;
(2)判断函数f(x)的单调性.

分析 (1)求出导函数,可知f'(1)=-a=0,求出a的值,根据导函数判断函数的单调性,继而求出函数的极值;

(2)求出导函数,通过讨论-x2+x-a=0的判别式△=1-4a,对a进行分类讨论,得出原函数的单调区间.

解答 解(1)函数的定义域为(0,+∞),
f'(x)=$\frac{1}{x}$-1-$\frac{a}{{x}^{2}}$,f'(1)=-a=0,
∴a=0,
∴f(x)=lnx-x+1,f'(x)=$\frac{1}{x}$-1,
∴f(x)在(0,1)上递增,在(1,+∞)上递减,
∴极大值为f(1)=0,无极小值;
(2)由f'(x)=$\frac{-{x}^{2}+x-a}{{x}^{2}}$,方程-x2+x-a=0的判别式△=1-4a,
当a≥$\frac{1}{4}$时,f'(x)≤0,y=f(x)定义域上为减函数;
当0≤a<$\frac{1}{4}$时,令f'(x)=0,得x1=$\frac{1-\sqrt{1-4a}}{2}$>0,x2=$\frac{1+\sqrt{1-4a}}{2}$>0,
由f'(x)>0得$\frac{1-\sqrt{1-4a}}{2}$<x<$\frac{1+\sqrt{1-4a}}{2}$,
由f'(x)<0得0<x<$\frac{1-\sqrt{1-4a}}{2}$或x>$\frac{1+\sqrt{1-4a}}{2}$,
故f(x)在(0,$\frac{1-\sqrt{1-4a}}{2}$),($\frac{1+\sqrt{1-4a}}{2}$,+∞)上递减,在($\frac{1-\sqrt{1-4a}}{2}$,$\frac{1+\sqrt{1-4a}}{2}$)上递增;
当a<0时,令f'(x)=0,得x1=$\frac{1-\sqrt{1-4a}}{2}$<0,x2=$\frac{1+\sqrt{1-4a}}{2}$>0,
∴由f'(x)>0得,x∈(0,$\frac{1+\sqrt{1-4a}}{2}$),f'(x)<0得,x∈($\frac{1+\sqrt{1-4a}}{2}$,+∞),
故故f(x)在∈($\frac{1+\sqrt{1-4a}}{2}$,+∞)上递减,在(0,$\frac{1+\sqrt{1-4a}}{2}$)上递增.

点评 本题考查了导函数的应用和对参数的分类讨论问题,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2,离心率e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m与椭圆交于不同的两点A,B,与圆x2+y2=$\frac{2}{3}$相切于点M.
(i)证明:OA⊥OB(O为坐标原点);
(ii)设λ=$\frac{{|{AM}|}}{{|{BM}|}}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某医学院读书协会研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如图的频数分布直方图:
该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)已知选取的是1月与6月的两组数据:
(i)请根据2至5月份的数据,求出就诊人数y关于昼夜温差x的线性回归方程;
(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该协会所得线性回归方程是否理想?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,则输出的结果为(  )
A.3B.13C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{2^{x+1}},x≤0\\-log{\;}_{2}({x+1})+2,x>0\end{array}$,且f(a)=-1,则f(6-a)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC内角A,B,C的对边分别是a,b,c,且满足a($\sqrt{3}$sinC+cosC)=b+c.
(I) 求角A的大小;
(Ⅱ)已知函数f(x)=sin(ωx+A)的最小正周期为π,求f(x)的减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知正项数列{an}的前n项和为Sn,若4S${\;}_{n}^{2}$-2=a${\;}_{n}^{2}$+$\frac{1}{{a}_{n}^{2}}$(n∈N*),则S400=20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an},a1=1,且an-1-an-1an-an=0(n≥2,n∈N*),记bn=a2n-1a2n+1,数列{bn}的前n项和为Tn,则满足不等式Tn<$\frac{8}{17}$成立的最大正整数n为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{a}$=(cosα-1,sinα+3)(α∈R),$\overrightarrow{b}$=(4,1),则|$\overrightarrow{a}$+$\overrightarrow{b}$|的最大值为(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案