分析 利用4S${\;}_{n}^{2}$-2=a${\;}_{n}^{2}$+$\frac{1}{{a}_{n}^{2}}$,可得2Sn=an+$\frac{1}{{a}_{n}}$,利用an=Sn-Sn-1,再写一式,两式相减,确定{Sn2}是公差为1的等差数列,可得Sn2=n,即可得出结论.
解答 解:∵4S${\;}_{n}^{2}$-2=a${\;}_{n}^{2}$+$\frac{1}{{a}_{n}^{2}}$,
∴4S${\;}_{n}^{2}$=a${\;}_{n}^{2}$+$\frac{1}{{a}_{n}^{2}}$+2,
∴2Sn=an+$\frac{1}{{a}_{n}}$,
n≥2时,2Sn=Sn-Sn-1+$\frac{1}{{S}_{n}-{S}_{n-1}}$,
∴Sn2-Sn-12=1,
∴{Sn2}是公差为1的等差数列,
∵2S1=a1+$\frac{1}{{a}_{1}}$,正项数列{an},
∴a1=1,
∴S12=1,
∴Sn2=n,
∴S400=20.
故答案为:20.
点评 本题考查数列的通项与求和,考查等差数列的判断,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | R | B. | [0,+∞) | C. | (0,+∞) | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2014}{2015}$ | B. | $\frac{2015}{2016}$ | C. | $\frac{2016}{2017}$ | D. | $\frac{2017}{2018}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com