精英家教网 > 高中数学 > 题目详情
20.设集合A={x|ex>$\sqrt{e}$},集合B={x|lgx≤-lg2},则A∪B等于(  )
A.RB.[0,+∞)C.(0,+∞)D.

分析 先化简集合A,B,再根据集合的并集的定义即可求出.

解答 解:由ex>$\sqrt{e}$=${e}^{\frac{1}{2}}$,得到x>$\frac{1}{2}$,A=($\frac{1}{2}$,+∞),
由lgx≤-lg2=lg$\frac{1}{2}$,得到0<x≤$\frac{1}{2}$,B=(0,$\frac{1}{2}$],
∴A∪B=(0,+∞),
故选:C.

点评 本题考查了集合并集的运算,关键是求出集合A,B,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A,B,C的对边分别是a,b,c,已知cos2A=-$\frac{1}{3}$,c=$\sqrt{3}$,sinA=$\sqrt{6}$sinC.
(Ⅰ)求a的值;
(Ⅱ) 若角A为锐角,求b的值及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{2^{x+1}},x≤0\\-log{\;}_{2}({x+1})+2,x>0\end{array}$,且f(a)=-1,则f(6-a)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知正项数列{an}的前n项和为Sn,若4S${\;}_{n}^{2}$-2=a${\;}_{n}^{2}$+$\frac{1}{{a}_{n}^{2}}$(n∈N*),则S400=20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,顶点A(a,0),B(0,b),中心O到直线AB的距离为$\frac{2}{\sqrt{3}}$.
(1)求椭圆C的方程;
(2)设椭圆C上一动点P满足:$\overrightarrow{OP}$=λ$\overrightarrow{OM}$+2μ$\overrightarrow{ON}$,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为-$\frac{1}{2}$,若Q(λ,μ)为一动点,E1(-$\frac{\sqrt{3}}{2}$,0),E2($\frac{\sqrt{3}}{2}$,0)为两定点,求|QE1|+|QE2|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an},a1=1,且an-1-an-1an-an=0(n≥2,n∈N*),记bn=a2n-1a2n+1,数列{bn}的前n项和为Tn,则满足不等式Tn<$\frac{8}{17}$成立的最大正整数n为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某市运会期间30位志愿者年龄数据如表:
年龄(岁)人数(人)
197
212
283
304
315
323
406
合计30
(1)求这30位志愿者年龄的众数与极差;
(2)以十位为茎,个位数为叶,作出这30位志愿者年龄的茎叶图;
(3)求这30位志愿者年龄的方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某工厂对某产品的产量与单位成本的资料分析后有如表数据:
月     份12345
6
产量x千件234345
单位成本y元/件737271736968
(Ⅰ) 画出散点图,并判断产量与单位成本是否线性相关.
(Ⅱ) 求单位成本y与月产量x之间的线性回归方程.(其中结果保留两位小数)
参考公式:用最小二乘法求线性回归方程系数公式:$\widehatb$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_1^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$.
(附:线性回归方程$\widehaty$=$\widehatb$x+$\widehata$中,b=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)}({y_i}-\overline y)}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$,其中$\overline{x}$,$\overline{y}$为样本平均值,$\hat b,\hat a$的值的结果保留二位小数.)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点P(-1,2),线段PQ的中点M的坐标为(1,-1).若向量$\overrightarrow{PQ}$与向量a=(λ,1)共线,则λ=-$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案