精英家教网 > 高中数学 > 题目详情
15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,顶点A(a,0),B(0,b),中心O到直线AB的距离为$\frac{2}{\sqrt{3}}$.
(1)求椭圆C的方程;
(2)设椭圆C上一动点P满足:$\overrightarrow{OP}$=λ$\overrightarrow{OM}$+2μ$\overrightarrow{ON}$,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为-$\frac{1}{2}$,若Q(λ,μ)为一动点,E1(-$\frac{\sqrt{3}}{2}$,0),E2($\frac{\sqrt{3}}{2}$,0)为两定点,求|QE1|+|QE2|的值.

分析 (1)利用离心率为$\frac{\sqrt{2}}{2}$,中心O到直线AB的距离为$\frac{2}{\sqrt{3}}$.列出方程求出a,b,即可求解椭圆方程.
(2)设P(x,y),M(x1,y1),N(x2,y2),利用$\overrightarrow{OP}$=$λ\overrightarrow{OM}$+2μ$\overrightarrow{ON}$得,结合点P,M,N在椭圆上,
通过kQM•kQN=$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=-$\frac{1}{2}$,得到λ2+4μ2=1,由椭圆的定义,推出|QF1|+|QF2|=2即可.

解答 解:(1)因为直线AB的方程为ax+by-ab=0.所以$\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{2}{\sqrt{3}}$,
由已知得$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,故可解得a=2,b=$\sqrt{2}$;
所以椭圆的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$
(2)设P(x,y),M(x1,y1),N(x2,y2),
则由$\overrightarrow{OP}$=$λ\overrightarrow{OM}$+2μ$\overrightarrow{ON}$得,x=λx1+2μx2,y=λy1+2μy2
因为点P,M,N在椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$上,
所以x12+2y12=4,x22+2y22=4,x2+2y2=4
故x2+2y22(x12+2y12)+4μ2(x22+2y22)+4λμ(x1x2+2y1y2)=4λ2+16μ2+4λμ(x1x2+2y1y2)=4
设kQM,kQN分别为直线OM,ON的斜率,由题意知,kQM•kQN=$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=-$\frac{1}{2}$,
因此x1•x2+2y1y2=0,所以λ2+4μ2=1,
λ2+$\frac{{μ}^{2}}{\frac{1}{4}}$=1,可知表达式是椭圆,a=1,b=$\frac{1}{2}$,c=$\frac{\sqrt{3}}{2}$,
而E1,E2恰为椭圆的左右焦点,
所以由椭圆的定义,|QF1|+|QF2|=2.

点评 本题考查椭圆的标准方程的求法,椭圆的简单性质的应用,直线与椭圆位置关系的应用,考查分析问题解决问题的能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知中心在坐标原点,焦点在x轴上的椭圆M的离心率为$\frac{1}{2}$,椭圆上异于长轴顶点的任意点A与左右两焦点F1,F2构成的三角形中面积的最大值为$\sqrt{3}$.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)若A与C是椭圆M上关于x轴对称的两点,连接CF2与椭圆的另一交点为B,求证:直线AB与x轴交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为120°,|x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$|=$\sqrt{3}$(x,y∈R),则|x$\overrightarrow{{e}_{1}}$-y$\overrightarrow{{e}_{2}}$|的取值范围是[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在各项为正数的数列{an}中,数列{an}的前n项和Sn满足Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$).求a1,a2,a3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2015年7月,“国务院关于积极推进‘互联网+’行动的指导意见”正式公布,在“互联网+”的大潮下,我市某高中“微课堂”引入教学,某高三教学教师录制了“导数的应用”与“概率的应用”两个单元的微课视频放在所教两个班级(A班和B班)的网页上,A班(实验班,基础较好)共有学生60人,B班(普通班,基础较差)共有学生60人,该教师规定两个班的每一名同学必须在某一天观看其中一个单元的微课视频,第二天经过统计,A班有40人观看了“导数的应用”视频,其他20人观看了“概率的应用”视频,B班有25人观看了“导数的应用”视频,其他35人观看了“概率的应用”视频.
(1)完成下列2×2列联表:
 观看“导数的应用”
视频人数
观看“概率的应用”
视频人数
总计
A班   
B班   
总计   
判断是否有99%的把握认为学生选择两个视频中的哪一个与班级有关?
(2)在A班中用分层抽样的方法抽取6人进行学习效果调查;
①求抽取的6人中观看“导数的应用”视频的人数及观看“概率的应用”视频的人数;
②在抽取的6人中再随机抽取3人,设3人中观看“导数的应用”视频的人数为X,求X的分布列及数学期望.
参考公式:K2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
参考数据:
P(x2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={x|ex>$\sqrt{e}$},集合B={x|lgx≤-lg2},则A∪B等于(  )
A.RB.[0,+∞)C.(0,+∞)D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若复数z满足z=1-i+$\frac{1}{1-i}$,则z的虚部为(  )
A.-$\frac{1}{2}$iB.-$\frac{1}{2}$C.$\frac{1}{2}$iD.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在直角坐标系xOy中,点P是单位圆上的动点,过点P作x轴的垂线与射线y=$\sqrt{3}$x(x≥0)交于点Q,与x轴交于点M.记∠MOP=α,且α∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(Ⅰ)若sinα=$\frac{1}{3}$,求cos∠POQ;
(Ⅱ)求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.(3x-y)(x+2y)5的展开式中,x4y2的系数为(  )
A.110B.120C.130D.150

查看答案和解析>>

同步练习册答案