精英家教网 > 高中数学 > 题目详情
7.若复数z满足z=1-i+$\frac{1}{1-i}$,则z的虚部为(  )
A.-$\frac{1}{2}$iB.-$\frac{1}{2}$C.$\frac{1}{2}$iD.$\frac{1}{2}$

分析 化简z,从而求出z的虚部即可.

解答 解:∵z=1-i+$\frac{1}{1-i}$=1-i+$\frac{1+i}{(1-i)(1+i)}$=$\frac{3}{2}$-$\frac{i}{2}$,
则z的虚部是-$\frac{1}{2}$,
故选:B.

点评 本题考查了复数的化简求值问题,考查复数中的定义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的长轴长为4,其上顶点到直线3x+4y-1=0的距离等于$\frac{3}{5}$.
(1)求椭圆C的方程;
(2)若直线l与椭圆C交于A,B两点,交x轴的负半轴于点E,交y轴于点F(点E,F都不在椭圆上),且$\overrightarrow{FA}$=λ1$\overrightarrow{AE}$,$\overrightarrow{FB}$=λ2$\overrightarrow{BE}$,λ12=-8,证明:直线l恒过定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一辆汽车做变速直线运动,在时刻t的速度为v(t)=2+sint(t的单位:h,v单位:km/h),那么它在0≤t≤1这段时间内行驶的路程s(单位:km)是(  )
A.3-cos1B.3+cos1C.1+cos1D.1-cos1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,顶点A(a,0),B(0,b),中心O到直线AB的距离为$\frac{2}{\sqrt{3}}$.
(1)求椭圆C的方程;
(2)设椭圆C上一动点P满足:$\overrightarrow{OP}$=λ$\overrightarrow{OM}$+2μ$\overrightarrow{ON}$,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为-$\frac{1}{2}$,若Q(λ,μ)为一动点,E1(-$\frac{\sqrt{3}}{2}$,0),E2($\frac{\sqrt{3}}{2}$,0)为两定点,求|QE1|+|QE2|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{4030}$+$\frac{1}{4032}$的值的程序框图,其中判断框内应填入的是(  )
A.i≤4030?B.i≥4030?C.i≤4032?D.i≥4032?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某市运会期间30位志愿者年龄数据如表:
年龄(岁)人数(人)
197
212
283
304
315
323
406
合计30
(1)求这30位志愿者年龄的众数与极差;
(2)以十位为茎,个位数为叶,作出这30位志愿者年龄的茎叶图;
(3)求这30位志愿者年龄的方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线C:y2=2px(p>0)的焦点F和椭圆E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点重合,直线l过点F交抛物线于A,B两点.
(Ⅰ)若直线l的倾斜角为135°,求|AB|的长;
(Ⅱ)若直线l交y轴于点M,且$\overrightarrow{MA}$=m$\overrightarrow{AF}$,$\overrightarrow{MB}$=n$\overrightarrow{BF}$,试求m+n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|2x+a|-|2x-3|,a∈R.
(1)若a=2,求不等式f(x)≥-3的解集;
(2)若存在实数x使得f(x)≥2a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设复数z满足z=$\frac{2}{i-1}$,则z=(  )
A.-1-iB.-1+iC.1-iD.1+i

查看答案和解析>>

同步练习册答案