精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=|2x+a|-|2x-3|,a∈R.
(1)若a=2,求不等式f(x)≥-3的解集;
(2)若存在实数x使得f(x)≥2a成立,求实数a的取值范围.

分析 (1)通过讨论x的范围,求出不等式的解集即可;(2)根据绝对值的性质表示出f(x)的最大值,解不等式|a+3|≥2a即可.

解答 解:(1)f(x)=$\left\{\begin{array}{l}{-5,x<-1}\\{4x-1,-1≤x≤\frac{3}{2}}\\{5,x>\frac{3}{2}}\end{array}\right.$,
由f(x)≥-3,得$\left\{\begin{array}{l}{4x-1≥-3}\\{-1≤x≤\frac{3}{2}}\end{array}\right.$或x>$\frac{3}{2}$,
解得:-$\frac{1}{2}$≤x≤$\frac{3}{2}$或x>$\frac{3}{2}$,
∴x≥-$\frac{1}{2}$,
∴不等式的解集是[-$\frac{1}{2}$,+∞);
(2)∵f(x)=|2x+a|-|2x-3|≤|2x+a-2x+3|=|a+3|,
当且仅当(2x+a)(2x-3)≥0且|2x+a|≥|2x-3|时,如取x=$\frac{3}{2}$“=”成立,
∴f(x)的最大值为|a+3|,∴|a+3|≥2a,
∵a≤0时,上式成立,
当a>0时,a+3≥2a,∴0<a≤3,
综上,a的范围是(-∞,3].

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为120°,|x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$|=$\sqrt{3}$(x,y∈R),则|x$\overrightarrow{{e}_{1}}$-y$\overrightarrow{{e}_{2}}$|的取值范围是[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若复数z满足z=1-i+$\frac{1}{1-i}$,则z的虚部为(  )
A.-$\frac{1}{2}$iB.-$\frac{1}{2}$C.$\frac{1}{2}$iD.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在直角坐标系xOy中,点P是单位圆上的动点,过点P作x轴的垂线与射线y=$\sqrt{3}$x(x≥0)交于点Q,与x轴交于点M.记∠MOP=α,且α∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(Ⅰ)若sinα=$\frac{1}{3}$,求cos∠POQ;
(Ⅱ)求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,圆O的直径为AB且BE为圆O的切线,点C为圆O上不同于A、B的一点,AD为∠BAC的平分线,且分别与BC交于H,与圆O交于D,与BE交于E,连结BD、CD.
(Ⅰ)求证:∠DBE=∠DBC;
 (Ⅱ)若HE=4,求ED.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知变量x,y满足$\left\{\begin{array}{l}{0≤x≤3}\\{x+y≥0}\\{x-y+3≥0}\end{array}\right.$则z=2x-3y的最大值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=tan(ωx+$\frac{π}{4}$)(ω>0)的最小正周期为2π,则ω=$\frac{1}{2}$;f($\frac{π}{6}$)=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.(3x-y)(x+2y)5的展开式中,x4y2的系数为(  )
A.110B.120C.130D.150

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知复数z满足(1+i)z=1(为虚数单位),则z的模为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案