精英家教网 > 高中数学 > 题目详情
11.如图,圆O的直径为AB且BE为圆O的切线,点C为圆O上不同于A、B的一点,AD为∠BAC的平分线,且分别与BC交于H,与圆O交于D,与BE交于E,连结BD、CD.
(Ⅰ)求证:∠DBE=∠DBC;
 (Ⅱ)若HE=4,求ED.

分析 (Ⅰ)由BE为圆O的切线,BD为圆O的弦,根据弦切角定理得到一对角相等,再由AD为角平分线得到一对角相等,等量代换及圆周角定理即可得证;
(Ⅱ)由AB为圆O的直径,利用圆周角定理得到∠ADB=90°,再由第一问的结论∠DBE=∠DBH,求出ED的长即可.

解答 (Ⅰ)证明:∵BE为圆0的切线,BD为圆0的弦,
∴根据弦切角定理知∠DBE=∠DAB,
由AD为∠DAB=∠DAC的平分线知∠DAB=∠DAC,
又∠DBC=∠DAC,
∴∠DBC=∠DAB,
∴∠DBE=∠DBC;
(Ⅱ)解:∵⊙O的直径AB,
∴∠ADB=90°,
又由(1)得∠DBE=∠DBH,
∵HE=4,
∴ED=2.

点评 此题考查了与圆有关的比例线段,圆周角定理,切线的性质,熟练掌握定理及性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知正项数列{an}的前n项和为Sn,对?n∈N*有2Sn=an2+an.令bn=$\frac{\sqrt{{{a}_{n}}_{+1}}-\sqrt{{a}_{n}}}{\sqrt{{a}_{n+1}}•\sqrt{{a}_{n}}}$,设{bn}的前n项和为Tn,则T15=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{4030}$+$\frac{1}{4032}$的值的程序框图,其中判断框内应填入的是(  )
A.i≤4030?B.i≥4030?C.i≤4032?D.i≥4032?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线C:y2=2px(p>0)的焦点F和椭圆E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点重合,直线l过点F交抛物线于A,B两点.
(Ⅰ)若直线l的倾斜角为135°,求|AB|的长;
(Ⅱ)若直线l交y轴于点M,且$\overrightarrow{MA}$=m$\overrightarrow{AF}$,$\overrightarrow{MB}$=n$\overrightarrow{BF}$,试求m+n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆W:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),椭圆短轴长为2,且椭圆过点P(1,$\frac{{\sqrt{3}}}{2}}$),
1)求椭圆的方程;
2)直线l与椭圆W相交于A,B点,请问在椭圆W上是否存在点C,四边形AOBC为矩形,若存在,请求出矩形AOBC的面积,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|2x+a|-|2x-3|,a∈R.
(1)若a=2,求不等式f(x)≥-3的解集;
(2)若存在实数x使得f(x)≥2a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,给出的是求$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{30}$的值的一个程序框图,则判断框内填入的条件是(  )
A.i≥15B.i≤15C.i≥14D.i≤14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的一段图象经过点(0,$\sqrt{3}$)和($\frac{2π}{9}$,0),则f($\frac{π}{2}$)的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等比数列 {an}的前n项和为Sn,且a3=2S2+1,a4=2S3+1,则公比q为3.

查看答案和解析>>

同步练习册答案