精英家教网 > 高中数学 > 题目详情
6.已知椭圆W:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),椭圆短轴长为2,且椭圆过点P(1,$\frac{{\sqrt{3}}}{2}}$),
1)求椭圆的方程;
2)直线l与椭圆W相交于A,B点,请问在椭圆W上是否存在点C,四边形AOBC为矩形,若存在,请求出矩形AOBC的面积,若不存在,请说明理由.

分析 (1)由2b=2,可得b=1.又椭圆过点$P({1,\frac{{\sqrt{3}}}{2}})$,可得 $\frac{1}{a^2}+\frac{{\frac{3}{4}}}{b^2}=1$,联立解出即可得出.
(2)存在四边形为ABCD矩形.①AB斜率不存在时,显然对角线不等,故不符合题意;
②AB斜率存在时,假设存在四边形OABC为矩形,设AB直线方程为:y=kx+m,与椭圆联立消去y得:(1+4k2)x2+8kmx+4m2-4=0,△>0,四边形OABC为矩形.由OA⊥OB,即$\overrightarrow{OA}⊥\overrightarrow{OB}$,可得$\overrightarrow{OA}•\overrightarrow{OB}=0$,利用数量积运算性质及其根与系数的关系可得:5m2-4k2-4=0;又四边形OABC为矩形,$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,利用根与系数的关系、向量坐标运算即可得出.

解答 解:(1)∵2b=2,∴b=1.
∵椭圆过点$P({1,\frac{{\sqrt{3}}}{2}})$,∴$\frac{1}{a^2}+\frac{{\frac{3}{4}}}{b^2}=1$,
解得:a2=4,
∴椭圆方程为$\frac{x^2}{4}+{y^2}=1$.
(2)存在四边形为ABCD矩形.
①AB斜率不存在时,显然对角线不等,故不符合题意;
②AB斜率存在时,假设存在四边形OABC为矩形,
设AB直线方程为:y=kx+m,联立$\left\{\begin{array}{l}y=kx+m\\{x^2}+4{y^2}=4\end{array}\right.$,消去y得:(1+4k2)x2+8kmx+4m2-4=0,
△=16(4k2-m2+1)>0,即:4k2+1>m2,①
∴${x_1}+{x_2}=-\frac{8km}{{1+4{k^2}}}$,${x_1}{x_2}=\frac{{4{m^2}-4}}{{1+4{k^2}}}$,
∵四边形OABC为矩形,
∵OA⊥OB,即$\overrightarrow{OA}⊥\overrightarrow{OB}$,
∴$\overrightarrow{OA}•\overrightarrow{OB}=0$,
∴x1x2+y1y2=0,即x1x2+(kx1+m)(kx2+m)=0,
化为:$({1+{k^2}}){x_1}{x_2}+km({{x_1}+{x_2}})+{m^2}=0$,
代入可得:$({1+{k^2}})\frac{{4{m^2}-4}}{{1+4{k^2}}}+km•\frac{-8km}{{1+4{k^2}}}+{m^2}=0$,
整理得:5m2-4k2-4=0  ②
由①②得  ${m^2}>\frac{3}{4}$  ③
又∵四边形OABC为矩形,故$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,
设C(x0,y0),则$\left\{\begin{array}{l}{x_0}={x_1}+{x_2}\\{y_0}={y_1}+{y_2}=k({{x_1}+{x_2}})+2m\end{array}\right.$,
∴$C({-\frac{8km}{{1+4{k^2}}},\frac{2m}{{1+4{k^2}}}})$,
∵C在椭圆上,∴$\frac{{16{k^2}{m^2}}}{{{{({1+4{k^2}})}^2}}}+\frac{{4{m^2}}}{{{{({1+4{k^2}})}^2}}}=1$,
即$\frac{{4{m^2}}}{{1+4{k^2}}}=1$,故4m2=1+4k2,④
结合②④,解得$\left\{\begin{array}{l}{m^2}=3\\{k^2}=\frac{11}{4}\end{array}\right.$,符合题意.
$|{AB}|=\sqrt{1+{k^2}}\frac{{4\sqrt{4{k^2}+1-{m^2}}}}{{1+4{k^2}}}$,而O到AB距离:$d=\frac{|m|}{{\sqrt{1+{k^2}}}}$,
${S_{矩形AOBC}}=d•|{AB}|=\frac{{4|m|\sqrt{4{k^2}+1-{m^2}}}}{{1+4{k^2}}}=\frac{{4\sqrt{3}\sqrt{9}}}{12}=\sqrt{3}$.

点评 本题考查了椭圆的标准方程及其性质、一元二次方程的根与系数的关系、向量数量积运算性质、弦长公式、矩形的面积计算公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.命题p:?x<0,x2<2x,则命题¬p为(  )
A.?x0<0,x02<2${\;}^{{x}_{0}}$B.?x0≥0,x02≥2${\;}^{{x}_{0}}$
C.?x0<0,x02≥2${\;}^{{x}_{0}}$D.?x0≥0,x02<2${\;}^{{x}_{0}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.把“正整数N除以正整数m后的余数为n”记为N≡n(modm),例如8≡2(mod3).执行如图的该程序框图后,输出的i值为(  )
A.14B.17C.22D.23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)定义在R上,f′(x)是f(x)的导函数,且f′(x)<$\frac{1}{2}$,f(1)=1,则不等式f(x)<$\frac{x}{2}$+$\frac{1}{2}$的解集为(  )
A.{x|x<-1}B.{x|x>1}C.{x|x<-1或x>1}D.{x|-1<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知曲线C的方程为$\frac{x^2}{a}$+$\frac{y^2}{b}$=1,则“a>b”是“曲线C为焦点在x轴上的椭圆”的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,圆O的直径为AB且BE为圆O的切线,点C为圆O上不同于A、B的一点,AD为∠BAC的平分线,且分别与BC交于H,与圆O交于D,与BE交于E,连结BD、CD.
(Ⅰ)求证:∠DBE=∠DBC;
 (Ⅱ)若HE=4,求ED.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数a、m满足a=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx,(x+a+m)7=a0+a1(x+1)+a2(x+1)2+…+a7(x+1)7,且(a0+a2+a4+a62-(a1+a3+a5+a72=37,则m=(  )
A.-1或3B.1或-3C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=4x2+$\frac{1}{x}$-a,g(x)=f(x)+b,其中a,b为常数.
(1)若x=1是函数y=xf(x)的一个极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)有2个零点,f(g(x))有6个零点,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(2,m+1),$\overrightarrow{b}$=(m+3,4),且($\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$-$\overrightarrow{b}$),则m=-5或1.

查看答案和解析>>

同步练习册答案