精英家教网 > 高中数学 > 题目详情
10.2015年7月,“国务院关于积极推进‘互联网+’行动的指导意见”正式公布,在“互联网+”的大潮下,我市某高中“微课堂”引入教学,某高三教学教师录制了“导数的应用”与“概率的应用”两个单元的微课视频放在所教两个班级(A班和B班)的网页上,A班(实验班,基础较好)共有学生60人,B班(普通班,基础较差)共有学生60人,该教师规定两个班的每一名同学必须在某一天观看其中一个单元的微课视频,第二天经过统计,A班有40人观看了“导数的应用”视频,其他20人观看了“概率的应用”视频,B班有25人观看了“导数的应用”视频,其他35人观看了“概率的应用”视频.
(1)完成下列2×2列联表:
 观看“导数的应用”
视频人数
观看“概率的应用”
视频人数
总计
A班   
B班   
总计   
判断是否有99%的把握认为学生选择两个视频中的哪一个与班级有关?
(2)在A班中用分层抽样的方法抽取6人进行学习效果调查;
①求抽取的6人中观看“导数的应用”视频的人数及观看“概率的应用”视频的人数;
②在抽取的6人中再随机抽取3人,设3人中观看“导数的应用”视频的人数为X,求X的分布列及数学期望.
参考公式:K2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
参考数据:
P(x2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

分析 (1)根据题目中的数据,完成2×2列联表,计算K2,对照数表即可得出结论;
(2)①利用分层抽样原理求出对应的数值;
②计算X的可能取值以及对应的概率值,列出X的分布列,求出数学期望值.

解答 解:(1)根据题目中的数据,完成下列2×2列联表:

 观看“导数的应用”
视频人数
观看“概率的应用”
视频人数
总计
A班40 20 60 
B班25 35 60 
总计 65 55120 
计算K2=$\frac{120{×(40×35-25×20)}^{2}}{60×60×65×55}$≈7.5524>6.635,
∴有99%的把握认为学生选择两个视频中的哪一个与班级有关;
(2)在A班中用分层抽样的方法抽取6人进行学习效果调查;
①抽取的6人中观看“导数的应用”视频的人数是6×$\frac{40}{60}$=4,观看“概率的应用”视频的人数是6×$\frac{20}{60}$=2;
②在抽取的6人中再随机抽取3人,设3人中观看“导数的应用”视频的人数为X,则X的可能取值为1、2、3,
计算P(X=1)=$\frac{{C}_{4}^{1}{•C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{1}{5}$,P(X=2)=$\frac{{C}_{4}^{2}{•C}_{2}^{1}}{{C}_{6}^{3}}$=$\frac{3}{5}$,P(X=3)=$\frac{{C}_{4}^{1}{•C}_{2}^{2}}{{C}_{6}^{3}}$=$\frac{1}{5}$;
∴X的分布列为:
X123
P(X)$\frac{1}{5}$$\frac{3}{5}$$\frac{1}{5}$
所以X的数学期望为EX=1×$\frac{1}{5}$+2×$\frac{3}{5}$+3×$\frac{1}{5}$=2.

点评 本题考查了独立性检验的应用问题,也考查了离散型随机变量的分布列与期望的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点到直线x-y+2$\sqrt{2}$=0的距离为3,且过点(-1,-$\frac{\sqrt{6}}{2}$).
(1)求E的方程;
(2)设椭圆E的左顶点是A,直线l:x-my-t=0与椭圆E相交于不同的两点M,N(M,N均与A不重合),且以MN为直径的圆过点A,试判断直线l是否过定点,若过定点,求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正项数列{an}的前n项和为Sn,对?n∈N*有2Sn=an2+an.令bn=$\frac{\sqrt{{{a}_{n}}_{+1}}-\sqrt{{a}_{n}}}{\sqrt{{a}_{n+1}}•\sqrt{{a}_{n}}}$,设{bn}的前n项和为Tn,则T15=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一辆汽车做变速直线运动,在时刻t的速度为v(t)=2+sint(t的单位:h,v单位:km/h),那么它在0≤t≤1这段时间内行驶的路程s(单位:km)是(  )
A.3-cos1B.3+cos1C.1+cos1D.1-cos1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,内角A、B、C的对边分别是a、b、c,且满足(4a-3c)cosB=3bcosC,若a,b,c成等差数列,则sinA+sinC=$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,顶点A(a,0),B(0,b),中心O到直线AB的距离为$\frac{2}{\sqrt{3}}$.
(1)求椭圆C的方程;
(2)设椭圆C上一动点P满足:$\overrightarrow{OP}$=λ$\overrightarrow{OM}$+2μ$\overrightarrow{ON}$,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为-$\frac{1}{2}$,若Q(λ,μ)为一动点,E1(-$\frac{\sqrt{3}}{2}$,0),E2($\frac{\sqrt{3}}{2}$,0)为两定点,求|QE1|+|QE2|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图给出的是计算$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{4030}$+$\frac{1}{4032}$的值的程序框图,其中判断框内应填入的是(  )
A.i≤4030?B.i≥4030?C.i≤4032?D.i≥4032?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线C:y2=2px(p>0)的焦点F和椭圆E:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点重合,直线l过点F交抛物线于A,B两点.
(Ⅰ)若直线l的倾斜角为135°,求|AB|的长;
(Ⅱ)若直线l交y轴于点M,且$\overrightarrow{MA}$=m$\overrightarrow{AF}$,$\overrightarrow{MB}$=n$\overrightarrow{BF}$,试求m+n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的一段图象经过点(0,$\sqrt{3}$)和($\frac{2π}{9}$,0),则f($\frac{π}{2}$)的值为-1.

查看答案和解析>>

同步练习册答案