分析 (I)由正弦定理,三角形内角和定理,两角和的正弦函数公式化简已知等式$\sqrt{3}$sinAsinC=cosAsinC+sinC,又sinC≠0,利用三角函数恒等变换的应用可得sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,由A-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),即可解得A的值.
(Ⅱ)利用三角函数周期公式可求ω,可得函数解析式为f(x)=sin(2x+$\frac{π}{3}$),由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,(k∈Z),即可解得f(x)的减区间.
解答 (本题满分为12分)
解:(I)在△ABC中,由题意及正弦定理可得:sinA($\sqrt{3}$sinC+cosC)=sinB+sinC,…(2分)
∴$\sqrt{3}$sinAsinC+sinAcosC=sin(A+C)+sinC=sinAcosC+cosAsinC+sinC,…(4分)
整理可得:$\sqrt{3}$sinAsinC=cosAsinC+sinC,
又∵C为三角形内角,sinC≠0,
∴$\sqrt{3}$sinA=cosA+1,…(6分)
∴2($\frac{\sqrt{3}}{2}$sinA-$\frac{1}{2}$cosA)=1,即sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,
又∵A-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),
∴A-$\frac{π}{6}$=$\frac{π}{6}$,可得:A=$\frac{π}{3}$…(8分)
(Ⅱ)由题意,ω=$\frac{2π}{π}$=2,…(10分)
∴f(x)=sin(2x+$\frac{π}{3}$),
∴由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,(k∈Z),可得:kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,(k∈Z),
∴f(x)的减区间为:[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],(k∈Z)…(12分)
注:不写出k∈Z,扣1分.
点评 本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,三角函数周期公式在解三角形中的应用,考查了正弦函数的单调性,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-∞,2) | C. | (0,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com