精英家教网 > 高中数学 > 题目详情
10.定义域为R的可导函数y=f(x)的导函数f′(x),满足f(x)>f′(x),且f(0)=2,则不等式f(x)<2ex的解集为(  )
A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)

分析 构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,通过导函数判断函数的单调性,利用单调性得出x的范围.

解答 设g(x)=$\frac{f(x)}{{e}^{x}}$,
则g'(x)=$\frac{f'(x)-f(x)}{{e}^{x}}$,
∵f(x)>f′(x),
∴g'(x)<0,即函数g(x)单调递减.
∵f(0)=2,
∴g(0)=f(0)=2,
则不等式等价于g(x)<g(0),
∵函数g(x)单调递减.
∴x>0,
∴不等式的解集为(0,+∞),
故选:C.

点评 考查了函数的构造和导函数判断函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),过点Q($\sqrt{2}$,1),右焦点F($\sqrt{2}$,0),
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=k(x-1)(k>0)分别交x轴,y轴于C,D两点,且与椭圆C交于M,N两点,若$\overrightarrow{CN}=\overrightarrow{MD}$,求k值,并求出弦长|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知△ABC内角A,B,C的对边分别是a,b,c,且满足a($\sqrt{3}$sinC+cosC)=b+c.
(I) 求角A的大小;
(Ⅱ)已知函数f(x)=sin(ωx+A)的最小正周期为π,求f(x)的减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若(1-2x)2016=a0+a1x+a2x2+…+a2016x2016,(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2016)的值是(  )
A.2018B.2017C.2016D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an},a1=1,且an-1-an-1an-an=0(n≥2,n∈N*),记bn=a2n-1a2n+1,数列{bn}的前n项和为Tn,则满足不等式Tn<$\frac{8}{17}$成立的最大正整数n为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知总体的各个个体的值由小到大依次为1,3,4,8,a,c,11,23,53,86,且总体的中位数为10,则 cos $\frac{a+c}{3}$ π 的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,a,b,c分别是角A,B,C的对边,且a+c=2b.
(I)求角B的取值范围;
(Ⅱ)若A-C=$\frac{π}{3}$,求sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量(单位:件),整理得如表:
日需求量n89101112
频数91115105
①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F(-c,0)(c>0)作圆x2+y2=$\frac{{a}^{2}}{9}$的切线,切点为E,延长FE交双曲线右支与点P,O为坐标原点.若$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),则双曲线的离心率为(  )
A.$\sqrt{10}$B.$\frac{\sqrt{17}}{3}$C.$\frac{\sqrt{17}}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

同步练习册答案