精英家教网 > 高中数学 > 题目详情
20.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F(-c,0)(c>0)作圆x2+y2=$\frac{{a}^{2}}{9}$的切线,切点为E,延长FE交双曲线右支与点P,O为坐标原点.若$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),则双曲线的离心率为(  )
A.$\sqrt{10}$B.$\frac{\sqrt{17}}{3}$C.$\frac{\sqrt{17}}{2}$D.$\frac{\sqrt{10}}{2}$

分析 由$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),知E为PF的中点,令右焦点为F′,则O为FF′的中点,则|PF′|=2|OE|=$\frac{2}{3}$a,运用双曲线的定义可得|PF|=|PF′|+2a=$\frac{8}{3}$a,在Rt△PFF′中,|PF|2+|PF′|2=|FF′|2,由此能求出离心率.

解答 解由$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),
可得E为PF的中点,令右焦点为F′,
O为FF′的中点,
则|PF′|=2|OE|=$\frac{2}{3}$a,
由E为切点,
可得OE⊥PF,
即有PF′⊥PF,
由双曲线的定义可得|PF|-|PF′|=2a,
即|PF|=|PF′|+2a=$\frac{8}{3}$a,
在Rt△PFF′中,|PF|2+|PF′|2=|FF′|2
即$\frac{64}{9}$a2+$\frac{4}{9}$a2=4c2,即c=$\frac{\sqrt{17}}{3}$a,
则离心率e=$\frac{c}{a}$=$\frac{\sqrt{17}}{3}$.
故选:B.

点评 本题考查双曲线的离心率的求法,注意运用直线和圆相切的性质,以及双曲线的定义和中位线定理,勾股定理,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.定义域为R的可导函数y=f(x)的导函数f′(x),满足f(x)>f′(x),且f(0)=2,则不等式f(x)<2ex的解集为(  )
A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x2-2x|+ax+a.
(Ⅰ)当a=1时,求f(x)的最小值;
(Ⅱ)若任意x∈[-1,2],使得f(x)≥|x|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A(0,1),B(0,-1)是椭圆$\frac{x^2}{2}$+y2=1的两个顶点,过其右焦点F的直线l与椭圆交于C,D两点,与y轴交于P点(异于A,B两点),直线AC与直线BD交于Q点.
(Ⅰ)当|CD|=$\frac{{3\sqrt{2}}}{2}$时,求直线l的方程;
(Ⅱ)求证:$\overrightarrow{OP}$•$\overrightarrow{OQ}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在钝角△ABC中,已知sin2A+$\frac{{\sqrt{3}}}{6}$sin2A=1,则sinB•cosC取得最小值时,角B等于$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一袋中有8个大小相同的小球,其中1个黑球,3个白球,4个红球.若从袋中一次摸出2个小球,求恰为异色球的概率为(  )
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{15}{28}$D.$\frac{19}{28}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=ln(cosx)在区间(-$\frac{π}{2}$,$\frac{π}{2}$)上的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=sin(ωx+φ)(ω>0),如果存在实数x0,使得对任意的实数x,都有f(x0)≤f(x)≤f(x0+6π)成立,则ω的最小值为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆O:x2+y2=1的切线l与椭圆C:x2+3y2=4相交于A、B、两点.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)求证:OA⊥OB.

查看答案和解析>>

同步练习册答案