分析 (Ⅰ)由题意可得椭圆的a,b,c,由离心率公式可得所求值;
(Ⅱ)讨论切线的斜率不存在和存在,设出直线方程,联立椭圆方程,运用韦达定理和向量的数量积的坐标表示,化简整理,即可得证.
解答 解:(Ⅰ)椭圆C:x2+3y2=4即为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{\frac{4}{3}}$=1,
可得a=2,b=$\frac{2\sqrt{3}}{3}$,c=$\sqrt{{a}^{2}-{b}^{2}}$=$\frac{2\sqrt{6}}{3}$,
即有e=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$;
(Ⅱ)证明:若切线l的斜率不存在,则l:x=±1.
在x2+3y2=4中,令x=1得y=±1.
不妨设A(1,1),B(1,-1),则$\overrightarrow{OA}$•$\overrightarrow{OB}$=1-1=0.可得OA⊥OB;
同理,当l:x=-1时,也有OA⊥OB.
若切线l的斜率存在,设l:y=kx+m,依题意$\frac{|m|}{\sqrt{1+{k}^{2}}}$=1,即k2+1=m2.
由$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+3{y}^{2}=4}\end{array}\right.$,得(3k2+1)x2+6kmx+3m2-4=0.显然△>0.
设A(x1,y1),B(x2,y2),则x1+x2=-$\frac{6km}{1+3{k}^{2}}$,x1x2=$\frac{3{m}^{2}-4}{1+3{k}^{2}}$.
所以y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2.
所以$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=(1+k2)x1x2+km(x1+x2)+m2
=(1+k2)•$\frac{3{m}^{2}-4}{1+3{k}^{2}}$+km(-$\frac{6km}{1+3{k}^{2}}$)+m2
=$\frac{(1+{k}^{2})(3{m}^{2}-4)-6{k}^{2}{m}^{2}+(1+3{k}^{2}){m}^{2}}{1+3{k}^{2}}$
=$\frac{4{m}^{2}-4{k}^{2}-4}{1+3{k}^{2}}$=$\frac{4(1+{k}^{2})-4-4{k}^{2}}{1+3{k}^{2}}$=0.
所以OA⊥OB.
综上所述,总有OA⊥OB成立.
点评 本题考查椭圆的方程和性质,主要考查椭圆的离心率的求法,考查直线方程和椭圆方程联立,运用韦达定理和弦长公式,以及点到直线的距离公式,以及向量垂直的条件:数量积为0,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | $\frac{\sqrt{17}}{3}$ | C. | $\frac{\sqrt{17}}{2}$ | D. | $\frac{\sqrt{10}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com