精英家教网 > 高中数学 > 题目详情
11.在平面直角坐标系中:已知曲线C:$\frac{y^2}{4}+{x^2}$=1(x≥0).
(1)求曲线C的参数方程;
(2)曲线C上任意点P(除短轴端点外)与短轴两个端点B1,B2连线分别为与x轴交于M,N两点,O为坐标原点,求证:|OM|•|ON|为定值.

分析 (1)运用椭圆的参数方程,及同角的平方关系,即可得到所求参数方程;
(2)设P(cosθ,2sinθ),$θ∈[-\frac{π}{2},\frac{π}{2}]$,设B1(0,2),B2(0,-2),求出直线PB1的方程,直线PB2的方程,令y=0,求得M,N的坐标,计算即可得到|OM|•|ON|为定值1.

解答 解:(1)由曲线C:$\frac{y^2}{4}+{x^2}$=1(x≥0),可得
曲线C的参数方程为$\left\{{\begin{array}{l}{x=cosθ}\\{y=2sinθ}\end{array}}\right.$(θ为参数,$θ∈[-\frac{π}{2},\frac{π}{2}]$);
(2)证明:设P(cosθ,2sinθ),$θ∈[-\frac{π}{2},\frac{π}{2}]$,
设B1(0,2),B2(0,-2),
可得直线PB1的方程为y=$\frac{2sinθ-2}{cosθ}$x+2,
直线PB2的方程为y=$\frac{2sinθ+2}{cosθ}$x+2,
令y=0,可得M($\frac{cosθ}{1-sinθ}$,0),N($\frac{-cosθ}{1+sinθ}$,0),
则|OM|•|ON|=|$\frac{cosθ}{1-sinθ}$•$\frac{-cosθ}{1+sinθ}$|=|$\frac{co{s}^{2}θ}{1-si{n}^{2}θ}$|=1.
即有|OM|•|ON|为定值1.

点评 本题考查参数方程和普通方程的互化,考查参数方程的运用,以及直线方程的运用,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=sin(ωx+φ)(ω>0),如果存在实数x0,使得对任意的实数x,都有f(x0)≤f(x)≤f(x0+6π)成立,则ω的最小值为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆O:x2+y2=1的切线l与椭圆C:x2+3y2=4相交于A、B、两点.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若点M是以椭圆$\frac{x^2}{4}+\frac{y^2}{3}$=1的短轴为直径的圆在第一象限内的一点,过点M作该圆的切线交椭圆于P,Q两点,椭圆的右焦点为F2,则△PQF2的周长是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=cos2xcosφ-sin2xsinφ(0<φ<$\frac{π}{2}$)的图象的一个对称中心为($\frac{π}{6}$,0),则下列说法不正确的是(  )
A.直线x=$\frac{5}{12}$π是函数f(x)的图象的一条对称轴
B.函数f(x)在[0,$\frac{π}{6}$]上单调递减
C.函数f(x)的图象向右平移$\frac{π}{6}$个单位可得到y=cos2x的图象
D.函数f(x)在[0,$\frac{π}{2}$]上的最小值为-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.△ABC的三个内角A,B,C所对的边分别为a,b,c,若${B}=\frac{π}{3}$,a=1,$b=\sqrt{3}$,则A=(  )
A.150°B.30°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知F1,F2分别是椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左,右焦点,A,B分别为椭圆的上,下顶点.过椭圆的右焦点F2的直线交椭圆于C,D两点.△F1CD的周长为8,且直线AC,BC的斜率之积为-$\frac{1}{4}$.则椭圆的方程为(  )
A.$\frac{x^2}{2}$+y2=1B.$\frac{x^2}{3}$+$\frac{y^2}{2}$=1C.$\frac{x^2}{4}$+y2=1D.$\frac{x^2}{4}$+$\frac{y^2}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=a$\sqrt{x}$,且f′(1)=1,则实数a=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点P是△ABC所在平面内一点,且满足3$\overrightarrow{PA}$+5$\overrightarrow{PB}$+2$\overrightarrow{PC}$=$\overrightarrow{0}$,已知△ABC的面积为6,则△PAC的面积为(  )
A.$\frac{9}{2}$B.4C.3D.$\frac{12}{5}$

查看答案和解析>>

同步练习册答案