精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=a$\sqrt{x}$,且f′(1)=1,则实数a=(  )
A.1B.-1C.2D.-2

分析 先求导,再代值计算即可

解答 解:∵f(x)=a$\sqrt{x}$,
∴f′(x)=$\frac{a}{2\sqrt{x}}$,
∴f′(1)=1=$\frac{a}{2}$,
∴a=2,
故选:C.

点评 本题考查了导数的运算法则和导数值的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.定义域为D的函数f(x),其导函数为f′(x),若对?x∈D,均有f(x)<f′(x),则称函数f(x)为D上的梦想函数.
(I)已知函数f(x)=sinx,试判断f(x)是否为其定义域上的梦想函数,并说明理由;
(Ⅱ)已知函数h(x)=sinx+ax+a-1(a∈R,x∈[0,π])为其定义域上的梦想函数,求a的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系中:已知曲线C:$\frac{y^2}{4}+{x^2}$=1(x≥0).
(1)求曲线C的参数方程;
(2)曲线C上任意点P(除短轴端点外)与短轴两个端点B1,B2连线分别为与x轴交于M,N两点,O为坐标原点,求证:|OM|•|ON|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F1,F2为椭圆C:$\frac{x^2}{4}+{y^2}$=1的左、右焦点,点P在C上,|PF1|=3|PF2|,则cos∠F1PF2等于(  )
A.$\frac{3}{4}$B.$-\frac{1}{3}$C.$-\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}的通项公式为an=(-1)n(3n-2),n∈N*,Sn是数列{an}的前n项和,那么,S20+S35的值是-22.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图:在三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,且与C在
底面A1B1C1上的射影D1为A1C1边的中点,D为AC的中点.
(1)求证:BD丄平面ACC1A1
(2)设CC1、B1C1的中点分别为E、M,求V${\;}_{C-E{D}_{1}M}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设n=$\int_0^{\frac{π}{2}}$4sinxdx,则(x+$\frac{2}{x}$)(x-$\frac{2}{x}$)n的展开式中各项系数和为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图是一个算法流程图,则输出S的值是25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=cos(x+$\frac{2π}{7}$)+2sin$\frac{π}{7}$sin(x+$\frac{π}{7}$),把函数f(x)的图象向右平移$\frac{π}{3}$,再把图象上所有点的横坐标扩大到原来的2倍,得到函数g(x),则函数g(x)的一条对称轴为(  )
A.x=$\frac{π}{3}$B.x=$\frac{π}{4}$C.x=$\frac{2π}{3}$D.x=$\frac{π}{6}$

查看答案和解析>>

同步练习册答案