精英家教网 > 高中数学 > 题目详情
16.△ABC的三个内角A,B,C所对的边分别为a,b,c,若${B}=\frac{π}{3}$,a=1,$b=\sqrt{3}$,则A=(  )
A.150°B.30°C.60°D.120°

分析 根据题意和正弦定理求出sinA的值,由内角的范围和边角关系求出A.

解答 解:△ABC中,∵${B}=\frac{π}{3}$,a=1,$b=\sqrt{3}$,
∴由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}$,则sinA=$\frac{a•sinB}{b}$=$\frac{1×\frac{\sqrt{3}}{2}}{\sqrt{3}}$=$\frac{1}{2}$,
∴A=30°或150°,
又a<b,∴A=30°,
故选:B.

点评 本题考查正弦定理的简单应用,注意边角关系和内角的范围,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.环保部门对5家造纸厂进行排污检查,若检查不合格,则必须整改,整改后经复查仍然不合格的,则关闭.设每家造纸厂检查是否合格是相互独立的,且每家造纸厂检查前合格的概率是$\frac{1}{2}$,整改后检查合格的概率是$\frac{4}{5}$,求:
(Ⅰ)恰好有两家造纸厂必须整改的概率;
(Ⅱ)至少要关闭一家造纸厂的概率;
(Ⅲ)平均多少家造纸厂需要整改?(其中($\frac{9}{10}$)5≈$\frac{59}{100}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的四个顶点构成一个面积为$2\sqrt{3}$的四边形,该四边形的一个内角为60°.
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线l与椭圆E相交于A,B两个不同的点,线段AB的中点为C,O为坐标原点,若△OAB面积为$\frac{{\sqrt{3}}}{2}$,求|OC|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的顶点到直线l1:y=x的距离分别为$\sqrt{2}$,$\frac{\sqrt{2}}{2}$.
(1)求C1的标准方程;
(2)设平行于l1的直线l交C1与A、B两点,若以AB为直径的圆恰好过坐标原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系中:已知曲线C:$\frac{y^2}{4}+{x^2}$=1(x≥0).
(1)求曲线C的参数方程;
(2)曲线C上任意点P(除短轴端点外)与短轴两个端点B1,B2连线分别为与x轴交于M,N两点,O为坐标原点,求证:|OM|•|ON|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=2cos2(x+$\frac{π}{8}$)+sin(2x+$\frac{π}{4}$),x∈(0,3π)则下列判断正确的是(  )
A.函数的一条对称轴为$x=\frac{π}{6}$
B.函数在区间$[{\frac{π}{2},\frac{5π}{4}}]$内单调递增
C.?x0∈(0,3π),使f(x0)=-1
D.?a∈R,使得函数y=f(x+a)在其定义域内为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F1,F2为椭圆C:$\frac{x^2}{4}+{y^2}$=1的左、右焦点,点P在C上,|PF1|=3|PF2|,则cos∠F1PF2等于(  )
A.$\frac{3}{4}$B.$-\frac{1}{3}$C.$-\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图:在三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,且与C在
底面A1B1C1上的射影D1为A1C1边的中点,D为AC的中点.
(1)求证:BD丄平面ACC1A1
(2)设CC1、B1C1的中点分别为E、M,求V${\;}_{C-E{D}_{1}M}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数z满足z=(1+i)(1-2i),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案