精英家教网 > 高中数学 > 题目详情
6.若复数z满足z=(1+i)(1-2i),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接由复数代数形式的乘法运算化简复数z,求出复数z在复平面内对应的点的坐标,则答案可求.

解答 解:由z=(1+i)(1-2i)=1-2i+i-2i2=3-i,
则复数z在复平面内对应的点的坐标为:(3,-1),位于第四象限.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.△ABC的三个内角A,B,C所对的边分别为a,b,c,若${B}=\frac{π}{3}$,a=1,$b=\sqrt{3}$,则A=(  )
A.150°B.30°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设有关x的一元二次方程x2-ax+b2=0,若a是从区间[0,6]任取的一个数,b是从区间[0,4]任取的一个数,则上述方程有实根的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{3}{8}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知定义在R上的函数f(x)和g(x)满足f(x)=ex-$\frac{1}{2}{x}^{2}$+$\frac{{f}^{′}(0)}{2}$x,且g(x)+g′(x)<0,则下列不等式成立的是(  )
A.f(2)g(2015)<g(2017)B.f(2)g(2015)>g(2017)C.g(2015)<f(2)g(2017)D.g(2015)>f(2)g(2017)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点P是△ABC所在平面内一点,且满足3$\overrightarrow{PA}$+5$\overrightarrow{PB}$+2$\overrightarrow{PC}$=$\overrightarrow{0}$,已知△ABC的面积为6,则△PAC的面积为(  )
A.$\frac{9}{2}$B.4C.3D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)的图象如图所示,则f(x)的解析式可能是(  )
A.y=xcosxB.y=cosx+$\frac{cos2x}{2}$+$\frac{cos3x}{3}$
C.y=xsinxD.y=sinx+$\frac{sin2x}{2}$+$\frac{sin3x}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知各项不为0的等差数列{an}满足a4-2a${\;}_{7}^{2}$+3a8=0,数列{bn}是等比数列,且b7=a7,则b6b7b8等于(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.执行如图所示的程序框图,若输出x的值为63,则输入的x值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知等比数列{an}满足a1=2,a1+a3+a5=14,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{3}}$+$\frac{1}{{a}_{5}}$=$\frac{7}{8}$.

查看答案和解析>>

同步练习册答案