精英家教网 > 高中数学 > 题目详情
17.设有关x的一元二次方程x2-ax+b2=0,若a是从区间[0,6]任取的一个数,b是从区间[0,4]任取的一个数,则上述方程有实根的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{3}{8}$D.$\frac{2}{3}$

分析 如图,试验的所有基本事件所构成的区域为矩形OABC及其内部,利用一元二次方程根的判别式算出方程有实根的事件对应的区域为图中的三角形OAD及其内部,求出两个区域的面积并利用几何概型公式,即可算出所求的概率.

解答 解:如图,所有的基本事件对应集合Ω={(a,b)|0≤a≤6,0≤b≤4},
构成的区域为如图的矩形OABC及其内部,其面积为S=6×4=24;
设事件A=“方程x2-ax+b2=0有实根”,
∵△=(a)2-4×1×b2≥0,结合a、b都是非负数,解得a≥2b,
∴事件A对应的集合A={(a,b)|0≤a≤6,0≤b≤4,且a≥2b},
所构成的区域为矩形OABC及其内部,且在直线a=2b的右下方部分,
即图中的三角形OAD及其内部,其面积S'=$\frac{1}{2}$×6×3=9.
由于点(a,b)落在区域内的每一点是随机的,
∴事件A发生的概率P(A)=$\frac{9}{24}$=$\frac{3}{8}$,即方程有实根的概率是$\frac{3}{8}$.
故选:C.

点评 本题给出含有字母参数的一元二次方程,求方程有实数根的概率.着重考查了一元二次方程根的判别式、不等式表示的平面区域、面积公式和几何概型计算公式等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的四个顶点构成一个面积为$2\sqrt{3}$的四边形,该四边形的一个内角为60°.
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线l与椭圆E相交于A,B两个不同的点,线段AB的中点为C,O为坐标原点,若△OAB面积为$\frac{{\sqrt{3}}}{2}$,求|OC|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F1,F2为椭圆C:$\frac{x^2}{4}+{y^2}$=1的左、右焦点,点P在C上,|PF1|=3|PF2|,则cos∠F1PF2等于(  )
A.$\frac{3}{4}$B.$-\frac{1}{3}$C.$-\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图:在三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,且与C在
底面A1B1C1上的射影D1为A1C1边的中点,D为AC的中点.
(1)求证:BD丄平面ACC1A1
(2)设CC1、B1C1的中点分别为E、M,求V${\;}_{C-E{D}_{1}M}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设n=$\int_0^{\frac{π}{2}}$4sinxdx,则(x+$\frac{2}{x}$)(x-$\frac{2}{x}$)n的展开式中各项系数和为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=sin(ωx-$\frac{π}{4}$)(ω>0)的最小正周期是$\frac{2π}{3}$,
(1)求ω;
(2)当x∈[${\frac{π}{6}$,$\frac{π}{2}}$]时,求函数y=f(x)的值域.
(3)求方程f(x)=a(0<a<1),在[0,2π]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图是一个算法流程图,则输出S的值是25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数z满足z=(1+i)(1-2i),则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设x,y满足$\left\{\begin{array}{l}{2x+y≥4}\\{x-y≥-1}\\{x-2y≤2}\end{array}\right.$,则log2(x+y)的最小值为1.

查看答案和解析>>

同步练习册答案