精英家教网 > 高中数学 > 题目详情
12.函数y=ln(cosx)在区间(-$\frac{π}{2}$,$\frac{π}{2}$)上的图象大致是(  )
A.B.C.D.

分析 先研究函数的奇偶性、再判断函数的单调性,即可得出结论.

解答 解:由于f(x)=ln(cosx),
∴f(-x)=ln[cos(-x)]=f(x),
∴函数是偶函数,排除B,D;
又函数在(0,$\frac{π}{2}$)上单调递减,排除C.
故选:A.

点评 本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在△ABC中,a,b,c分别是角A,B,C的对边,且a+c=2b.
(I)求角B的取值范围;
(Ⅱ)若A-C=$\frac{π}{3}$,求sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某居民小区有两个相互独立的安全防范系统A和B,系统A和系统B在任意时刻发生故障的概率分别为$\frac{1}{8}$和p.若在任意时刻恰有一个系统不发生故障的概率为$\frac{9}{40}$,则p=(  )
A.$\frac{1}{10}$B.$\frac{2}{15}$C.$\frac{1}{6}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点F(-c,0)(c>0)作圆x2+y2=$\frac{{a}^{2}}{9}$的切线,切点为E,延长FE交双曲线右支与点P,O为坐标原点.若$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),则双曲线的离心率为(  )
A.$\sqrt{10}$B.$\frac{\sqrt{17}}{3}$C.$\frac{\sqrt{17}}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线y2=8x的准线与双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{16}$=1相交于A,B两点,如果抛物线的焦点F总在以AB为直径的圆的内部,则双曲线的离心率取值范围是(  )
A.(3,+∞)B.(1,3)C.(2,+∞)D.(1,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一首诗词《巍巍宝塔》中写道:
“遥望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”
根据诗词中的描述,算出塔尖的灯数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在三棱锥S-ABC中,底面ABC是边长为3的等边三角形,SA⊥SC,SB⊥SC,SA=SB=2,则该三棱锥的体积为$\frac{\sqrt{35}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在数列{an}中,已知a1=1,a2=2,an+2=$\left\{\begin{array}{l}{{a}_{n}+2,n=2k-1}\\{3{a}_{n},n=2k}\end{array}\right.$(k∈N*).
(1)求数列{an}的通项公式;
(2)求满足2an+1=an+an+2的正整数n的值;
(3)设数列{an}的前n项和为Sn,问是否存在正整数m,n,使得S2n=mS2n-1?若存在,求出所有的正整数对(m,n);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知离心率为$\frac{\sqrt{2}}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(0,-1),且F1、F2分别是椭圆C的左、右焦点,不经过F1的斜率为k的直线l与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如果直线AF1、l、BF1的斜率依次成等差数列,求k的取值范围,并证明AB的中垂线过定点.

查看答案和解析>>

同步练习册答案